A101882 Write three numbers, skip one, write three, skip two, write three, skip three... and so on.
1, 2, 3, 5, 6, 7, 10, 11, 12, 16, 17, 18, 23, 24, 25, 31, 32, 33, 40, 41, 42, 50, 51, 52, 61, 62, 63, 73, 74, 75, 86, 87, 88, 100, 101, 102, 115, 116, 117, 131, 132, 133, 148, 149, 150, 166, 167, 168, 185, 186, 187, 205, 206, 207, 226, 227, 228, 248, 249, 250, 271
Offset: 1
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Programs
-
Mathematica
Flatten@Table[(n^2 + 5 n - 4)/2 + {0, 1, 2}, {n, 20}] (* Ivan Neretin, Aug 03 2016 *) Table[Range[#, # + 2] &[(n^2 + 7 n + 2)/2], {n, 0, 20}] // Flatten (* or *) Rest@ CoefficientList[Series[x (1 + x + x^2 - x^4 - x^5)/((1 + x + x^2)^2 (1 - x)^3), {x, 0, 61}], x] (* Michael De Vlieger, Aug 03 2016 *) LinearRecurrence[{1,0,2,-2,0,-1,1},{1,2,3,5,6,7,10},70] (* Harvey P. Dale, Dec 26 2019 *)
-
PARI
a(n)=my(k=n%3); if(k==2, n^2+17*n-2, k==1, n^2+19*n-2, n^2+15*n)/18 \\ Charles R Greathouse IV, Aug 03 2016
Formula
G.f.: x*(1+x+x^2-x^4-x^5)/ ((1+x+x^2)^2 * (1-x)^3). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = n + k * (k+1) / 2 where k = floor((n-1) / 3). - Ziad Ahmed, Jun 17 2025
Comments