A101907 Numbers k such that the arithmetic mean of the first k+1 Fibonacci numbers (beginning with F(0)) is an integer.
0, 3, 5, 8, 10, 18, 23, 28, 30, 33, 40, 45, 47, 58, 60, 70, 71, 78, 88, 93, 95, 99, 100, 105, 108, 119, 128, 130, 138, 143, 148, 150, 165, 178, 180, 190, 191, 198, 200, 210, 213, 215, 219, 225, 228, 238, 239, 240, 248, 250, 268, 270, 273, 280, 287, 310, 320, 330
Offset: 1
Examples
k = 3 : (F(0)+F(1)+F(2)+F(3))/4 = (0+1+1+2)/4 = 1. So 3 is a term. k = 5 : (F(0)+F(1)+F(2)+F(3)+F(4)+F(5))/6 = (0+1+1+2+3+5)/6 = 2. So 5 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad., Ser. A, Vol. 81, No. 2 (2005), pp. 17-20.
- H. R. Morton, Fibonacci-like sequences and greatest common divisors, The American Mathematical Monthly, Vol. 102, No. 8 (October 1995), pp. 731-734.
- Morgan Ward, The prime divisors of Fibonacci numbers, Pacific J. Math., Vol. 11, No. 1 (1961), pp. 379-386.
- Eric W. Weisstein's World of Mathematics, Arithmetic mean.
- Eric W. Weisstein's World of Mathematics, Fibonacci Number.
Crossrefs
Cf. A219612. - Altug Alkan, Dec 29 2015
Programs
-
Mathematica
Select[ Range[0, 500], Mod[Fibonacci[ # + 2] - 1, # + 1] == 0 &] (* Robert G. Wilson v *)
-
PARI
is(n)=((Mod([1,1;1,0],n+1))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Feb 04 2013
Formula
Numbers k such that (F(0)+ F(1)+ ... + F(k)) / (k+1) is an integer, where F(i) is the i-th Fibonacci number.
a(n) = A219612(n) - 1. - Altug Alkan, Dec 29 2015
Extensions
Edited and extended by Robert G. Wilson v, Aug 03 2008
Definition corrected by Altug Alkan, Dec 29 2015
Comments