cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A111035 Numbers n that divide the sum of the first n nonzero Fibonacci numbers.

Original entry on oeis.org

1, 2, 24, 48, 72, 77, 96, 120, 144, 192, 216, 240, 288, 319, 323, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1517, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2064, 2160
Offset: 1

Views

Author

Joseph L. Pe, Oct 05 2005

Keywords

Comments

The sum of the first n nonzero Fibonacci numbers is F(n+2)-1, sequence A000071. Knott discusses the factorization of these numbers. Most of the terms are divisible by 24. - T. D. Noe, Oct 10 2005, edited by M. F. Hasler, Mar 01 2020
All terms are either multiples of 24 (cf. A124455) or odd (cf. A331976) or congruent to 2 (mod 12), cf. A331870 where this statement is proved. - M. F. Hasler, Mar 01 2020

Examples

			2 | 4, 24 | 121392, 48 | 12586269024, ... [Corrected by _M. F. Hasler_, Feb 06 2020]
		

Crossrefs

See A101907 for another version.
Cf. A111058 (the analog for Lucas numbers).
Cf. A124455 (k for a(n) = 24k), A124456 (other a(n)), A331976 (odd a(n)), A331870 (even a(n) != 24k).

Programs

  • GAP
    Filtered([1..3000], n-> ((Fibonacci(n+2)-1) mod n)=0 ); # G. C. Greubel, Feb 03 2020
  • Magma
    [1] cat [n: n in [1..3000] | Fibonacci(n+2) mod n eq 1 ]; // G. C. Greubel, Feb 03 2020
    
  • Maple
    select(n-> irem(combinat[fibonacci](n+2)-1, n)=0, [$1..3000])[]; # G. C. Greubel, Feb 03 2020
  • Mathematica
    Select[Range[3000], Mod[Fibonacci[ #+2]-1, # ]==0&] (*  T. D. Noe, Oct 06 2005 *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Feb 04 2013
    
  • Sage
    [n for n in (1..3000) if mod(fibonacci(n+2), n)==1 ] # G. C. Greubel, Feb 03 2020
    

Formula

{n: n| A000071(n+2)}. - R. J. Mathar, Feb 05 2020

Extensions

More terms from Rick L. Shepherd and T. D. Noe, Oct 06 2005

A219612 Numbers k that divide the sum of the first k Fibonacci numbers (beginning with F(0)).

Original entry on oeis.org

1, 4, 6, 9, 11, 19, 24, 29, 31, 34, 41, 46, 48, 59, 61, 71, 72, 79, 89, 94, 96, 100, 101, 106, 109, 120, 129, 131, 139, 144, 149, 151, 166, 179, 181, 191, 192, 199, 201, 211, 214, 216, 220, 226, 229, 239, 240, 241, 249, 251, 269, 271, 274, 281, 288, 311
Offset: 1

Views

Author

Alex Ratushnyak, May 03 2013

Keywords

Comments

Numbers k such that A000045(k+1) == 1 (mod k). - Robert Israel, Oct 13 2015

Examples

			Sum of first 6 Fibonacci numbers is 0+1+1+2+3+5 = 12. Because 6 divides 12, 6 is in the sequence.
		

Crossrefs

Programs

  • Maple
    fmod:= proc(a, b) local A, n, f1, f2, f;
      uses LinearAlgebra[Modular];
      A:= Mod(b, <<1, 1>|<1, 0>>, integer[8]);
      MatrixPower(b, M, a)[1, 2];
    end proc:
    1, op(select(t -> fmod(t+1,t) = 1, [$2..10^4])); # Robert Israel, Oct 13 2015
  • Mathematica
    okQ[n_] := n == 1 || Mod[Fibonacci[n+1], n] == 1;
    Select[Range[1000], okQ] (* Jean-François Alcover, Feb 04 2023 *)
  • PARI
    lista(nn) = {sf = 0; for (n=0, nn, sf += fibonacci(n); if (sf % (n+1) == 0, print1(n+1, ", ")););} \\ Michel Marcus, Jun 05 2013
  • Python
    sum_, prpr, prev = 0, 0, 1
    for i in range(1, 1000):
      sum_ += prpr
      if sum_ % i == 0:  print(i, end=', ')
      prpr, prev = prev, prpr+prev
    

Formula

a(n) = A101907(n) + 1. - Altug Alkan, Dec 29 2015

A140971 Numbers k such that arithmetic mean of squares of the first k nonzero Fibonacci numbers is an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 13, 15, 17, 23, 24, 25, 36, 37, 43, 47, 48, 50, 53, 60, 67, 72, 73, 75, 83, 96, 97, 103, 107, 108, 110, 113, 120, 125, 127, 137, 144, 157, 163, 167, 168, 170, 173, 175, 180, 192, 193, 195, 197, 216, 223, 227, 233, 240, 257, 263, 277, 283, 288, 293
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 27 2008

Keywords

Comments

Is the root mean square RMS(F(0),...,F(k-1)) an integer for some k?

Examples

			k = 2: (A000045(1)^2+A000045(2)^2)/2 = 1.
		

Crossrefs

Programs

  • Mathematica
    nn=300;With[{fib2=Fibonacci[Range[nn]]^2},Flatten[Position[Table[ Mean[ Take[ fib2,n]],{n,nn}],?IntegerQ]]] (* _Harvey P. Dale, May 02 2013 *)

Formula

Numbers k such that A001654(k)/k is an integer.

Extensions

Edited and extended by R. J. Mathar, Aug 05 2008

A282772 Starting from F(n), minimum number, greater than 1, of consecutive Fibonacci numbers whose average is an integer.

Original entry on oeis.org

4, 2, 3, 12, 2, 13, 3, 2, 6, 5, 2, 12, 4, 2, 3, 12, 2, 24, 3, 2, 6, 24, 2, 12, 4, 2, 3, 12, 2, 5, 3, 2, 6, 13, 2, 12, 4, 2, 3, 5, 2, 24, 3, 2, 5, 24, 2, 12, 4, 2, 3, 12, 2, 24, 3, 2, 6, 24, 2, 5, 4, 2, 3, 12, 2, 24, 3, 2, 6, 5, 2, 12, 4, 2, 3, 12, 2, 24, 3, 2, 6
Offset: 0

Views

Author

Paolo P. Lava, Mar 03 2017

Keywords

Comments

Entries are 2, 3, 4, 5, 6, 12, 13 and 24.
Periodic with period equal to 420.

Examples

			a(0) = 4 because F(0) + F(1) + F(2) + F(3) = 0 + 1 + 1 + 2 = 4 and 4/4 = 1;
a(1) = 2 because F(1) + F(2) = 1 + 1 = 2 and 2/2 = 1;
a(2) = 3 because F(2) + F(3) + F(4) = 1 + 2 + 3 = 6 and 6/3 = 2;
a(3) = 12 because F(3) + F(4) + ... + F(13) + F(14) =  2 + 3 + ... + 233 + 377 = 984 and 984/12 = 82.
		

Crossrefs

Programs

  • Maple
    with(combinat): P:=proc(q) local a,k,n; for k from 0 to q do a:=fibonacci(k); for n from 1 to q do a:=a+fibonacci(k+n);
    if type(a/(n+1),integer) then print(n+1); break; fi; od; od; end: P(10^3);
  • Mathematica
    Table[k = 1; While[! IntegerQ@ Mean@ Take[#, n ;; n + k], k++]; k + 1, {n, Length@ # - 24}] &@ Fibonacci@ Range[0, 419] (* Michael De Vlieger, Mar 06 2017 *)

Formula

a(3*k + 1) = 2;
a(12*k + 2) = a(12*k + 6) = 3;
a(12*k) = 4;
a(30*k + 9) = a(30*k + 29) = a(60*k + 44) = 5;
a(60*k + 8) = a(60*k + 20) = a(60*k + 32) = a(60*k + 56) = 6;
a(60*k + 3) = a(60*k + 11) = a(60*k + 15) = a(60*k + 23) = a(60*k + 27) = a(60*k + 35) = a(60*k + 47) = a(60*k + 51) = 12;
a(420*k + 5) = a(420*k + 33) = a(420*k + 117) = a(420*k + 173) = a(420*k + 201) = a(420*k + 257) = a(420*k + 285) = a(420*k + 341) = 13;
a(420*k + x) = 24, with x = 17, 21, 41, 45, 53, 57, 65, 77, 81, 93, 101, 105, 113, 125, 137, 141, 153, 161, 165, 177, 185, 197, 213, 221, 225, 233, 237, 245, 261, 273, 281, 293, 297, 305, 317, 321, 333, 345, 353, 365, 377, 381, 393, 401, 405, 413, 417.

A266960 Integer averages of first n Fibonacci numbers (beginning with F(0)).

Original entry on oeis.org

0, 1, 2, 6, 13, 356, 3126, 28691, 70268, 271396, 6534495, 64591632, 162057126, 26237436541, 66438353080, 7020479040553, 11201604625686, 296414282891996, 32360305554728271, 339791857819043616, 871053578019254406, 5731478440138170841, 9181907843495831675
Offset: 1

Views

Author

Altug Alkan, Jan 07 2016

Keywords

Comments

It seems only 0, 1, 2, 13 are Fibonacci numbers.
Are there other Fibonacci numbers of the form (Fibonacci(k) - 1) / (k - 1)?
2 and 13 are the prime numbers. Are there other prime numbers in this sequence?

Examples

			1 is a term because (Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3)) / 4 = 4 / 4 = 1.
2 is a term because (Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3) + Fibonacci(4) + Fibonacci(5)) / 6 = 12 / 6 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Mean@ Fibonacci@ Range[0, n], {n, 0, 100}] /. Rational -> Nothing (* _Michael De Vlieger, Jan 07 2016 *)
    Module[{nn=100,fibs},fibs=Accumulate[Fibonacci[Range[0,nn]]];Select[ #[[1]] / #[[2]]&/@Thread[{fibs,Range[nn+1]}],IntegerQ]] (* Harvey P. Dale, Nov 15 2020 *)
  • PARI
    m(n) = sum(k=0, n, fibonacci(k)) % (n+1);
    b(n) = sum(k=0, n, fibonacci(k)) / (n+1);
    for(n=0, 1e2, if(m(n)==0, print1(b(n), ", ")));

Formula

a(n) = A000071(A219612(n) + 1) / A219612(n).
Showing 1-5 of 5 results.