cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A101907 Numbers k such that the arithmetic mean of the first k+1 Fibonacci numbers (beginning with F(0)) is an integer.

Original entry on oeis.org

0, 3, 5, 8, 10, 18, 23, 28, 30, 33, 40, 45, 47, 58, 60, 70, 71, 78, 88, 93, 95, 99, 100, 105, 108, 119, 128, 130, 138, 143, 148, 150, 165, 178, 180, 190, 191, 198, 200, 210, 213, 215, 219, 225, 228, 238, 239, 240, 248, 250, 268, 270, 273, 280, 287, 310, 320, 330
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 27 2008

Keywords

Comments

The sum of the first n Fibonacci numbers is F(n+2)-1, sequence A000071.
Knott discusses the factorization of these numbers. - T. D. Noe, Oct 10 2005

Examples

			k = 3 : (F(0)+F(1)+F(2)+F(3))/4 = (0+1+1+2)/4 = 1. So 3 is a term.
k = 5 : (F(0)+F(1)+F(2)+F(3)+F(4)+F(5))/6 = (0+1+1+2+3+5)/6 = 2. So 5 is a term.
		

Crossrefs

Cf. A000045, A000071. See A111035 for another version.
Cf. A219612. - Altug Alkan, Dec 29 2015

Programs

Formula

Numbers k such that (F(0)+ F(1)+ ... + F(k)) / (k+1) is an integer, where F(i) is the i-th Fibonacci number.
a(n) = A219612(n) - 1. - Altug Alkan, Dec 29 2015

Extensions

Edited and extended by Robert G. Wilson v, Aug 03 2008
Definition corrected by Altug Alkan, Dec 29 2015

A254141 The average of a(n) consecutive Fibonacci numbers is never an integer.

Original entry on oeis.org

8, 16, 21, 28, 32, 40, 52, 55, 56, 64, 65, 68, 69, 80, 84, 85, 87, 88, 92, 93, 99, 104, 105, 112, 117, 119, 128, 132, 133, 136, 140, 141, 145, 148, 152, 153, 155, 156, 160, 161, 164, 165, 171, 172, 176, 184, 187, 188, 196, 200, 203, 204, 205, 207, 208, 209, 212
Offset: 1

Views

Author

Paolo P. Lava, Jan 26 2015

Keywords

Comments

Subset of A033949 and A175594 (essentially the same sequence).
Numbers of the form 2^k, with k>=3, appear to be part of the sequence.
The file "List of indexes and steps (k, x, y)" (see Links) for k = 1, 2, 3, 4, ... consecutive Fibonacci numbers gives the minimum index to start to calculate the average ( x ) and the step to add to get all the other averages ( y ).
E.g.: for k = 7 we have 7, 6, 8. This means that we must start from the 6th Fibonacci number to add 7 consecutive Fibonacci numbers and get an average that is an integer. Fibonacci(6) + Fibonacci(7) + ... + Fibonacci(12) = 8 + 13 + 21 + 34 + 55 + 89 + 144 = 364 and 364 / 7 = 52.
Then 6 + 1*8 = 14, 6 + 2*8 = 22, 6 + 3*8 = 30, etc. are the other indexes:
Fibonacci(14) + Fibonacci (15) + ... + Fibonacci(20) = 377 + 610 + 987 + 1597 + 2584 + 4181 + 6765 = 17101 and 17101 / 7 = 2443;
Fibonacci(22) + Fibonacci(23) + ... + Fibonacci(28) = 17711 + 28657 + 46368 + 75025 + 121393 + 196418 + 317811 = 803383 and 803383 / 7 = 114769;
Fibonacci(30) + Fibonacci(31) + ... + Fibonacci(36) = 832040 + 1346269 + 2178309 + 3524578 + 5702887 + 9227465 + 14930352 = 37741900 and 37741900 / 7 = 5391700; etc.
In particular we note that:
x = 0 is A219612; x = 1 is A124456; x = 0 and y = k - 1 is A106535;
y = 1 is A141767; x = k - 1 and y = k + 1 is A000057;
x = y - 1 or y|k is A023172; y = k is A000351;
x = y - k + 1 appears to give only prime numbers: 3,11,19,31,59,71,79,131,179,191,239,251,271,311,359,379,419,431,439,479,491,499,571,599,631,659,719,739,751,839,971, etc.

Crossrefs

Programs

  • Maple
    with(numtheory); with(combinat):P:=proc(q) local a,b,k,j,n,ok;
    for j from 1 to q do b:=0; ok:=1;
    for n from 0 to q do a:=add(fibonacci(n+k),k=0..j-1)/j;
    if type(a,integer) then ok:=0; break; fi; od;
    if ok=1 then print(j); fi; od; end: P(20000);

A266960 Integer averages of first n Fibonacci numbers (beginning with F(0)).

Original entry on oeis.org

0, 1, 2, 6, 13, 356, 3126, 28691, 70268, 271396, 6534495, 64591632, 162057126, 26237436541, 66438353080, 7020479040553, 11201604625686, 296414282891996, 32360305554728271, 339791857819043616, 871053578019254406, 5731478440138170841, 9181907843495831675
Offset: 1

Views

Author

Altug Alkan, Jan 07 2016

Keywords

Comments

It seems only 0, 1, 2, 13 are Fibonacci numbers.
Are there other Fibonacci numbers of the form (Fibonacci(k) - 1) / (k - 1)?
2 and 13 are the prime numbers. Are there other prime numbers in this sequence?

Examples

			1 is a term because (Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3)) / 4 = 4 / 4 = 1.
2 is a term because (Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3) + Fibonacci(4) + Fibonacci(5)) / 6 = 12 / 6 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Mean@ Fibonacci@ Range[0, n], {n, 0, 100}] /. Rational -> Nothing (* _Michael De Vlieger, Jan 07 2016 *)
    Module[{nn=100,fibs},fibs=Accumulate[Fibonacci[Range[0,nn]]];Select[ #[[1]] / #[[2]]&/@Thread[{fibs,Range[nn+1]}],IntegerQ]] (* Harvey P. Dale, Nov 15 2020 *)
  • PARI
    m(n) = sum(k=0, n, fibonacci(k)) % (n+1);
    b(n) = sum(k=0, n, fibonacci(k)) / (n+1);
    for(n=0, 1e2, if(m(n)==0, print1(b(n), ", ")));

Formula

a(n) = A000071(A219612(n) + 1) / A219612(n).
Showing 1-3 of 3 results.