cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101912 G.f. satisfies: A(x) = 1/(1 + x*A(x^2)) and also the continued fraction: 1 + x*A(x^3) = [1; 1/x, 1/x^2, 1/x^4, 1/x^8, ..., 1/x^(2^(n-1)), ...].

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, -2, 3, -1, -3, 6, -4, -4, 12, -10, -5, 23, -25, -2, 43, -57, 12, 74, -124, 56, 120, -258, 172, 170, -516, 454, 187, -989, 1095, 40, -1811, 2487, -604, -3128, 5375, -2567, -4991, 11140, -7704, -6976, 22164, -20062, -7220, 42288, -48020, -36, 76928, -108334, 29476, 131898, -233020, 117166
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2004

Keywords

Comments

Sequence appears to have a rational g.f. - Ralf Stephan, May 17 2007
The conjecture is wrong. The g.f. is dependent on the number of terms. - Johannes W. Meijer, Aug 08 2011

Crossrefs

Programs

  • Maple
    nmax:=57: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101912(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^2)),x,k+1); for n from 0 to k do x(n):=coeff(f(x),x,n) od: A101912(k):=x(k): od: seq(A101912(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    m = 58; A[] = 0; Do[A[x] = 1/(1 + x A[x^2]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    {a(n)=local(A);A=1-x;for(i=1,n\2+1, A=1/(1+x*subst(A,x,x^2)+x*O(x^n)));polcoeff(A,n,x)}
    
  • PARI
    {a(n)=local(M=contfracpnqn(concat(1, vector(#binary(n)+1,n,1/x^(2^(n-1)))))); polcoeff(M[1,1]/M[2,1]+x*O(x^(3*n+1)),3*n+1)}

Formula

G.f.: 1/(1 + x/(1 + x^2/(1 + x^4/(1 + x^8/(1 + ...))))) (continued fraction). - Joerg Arndt, Oct 19 2012
G.f. A(x) = 1/B(x) where B(x) is the g.f. of A218031. - Joerg Arndt, Oct 19 2012
a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 01 2022

A101917 G.f. satisfies: A(x) = 1/(1 + x*A(x^7)) and also the continued fraction: 1 + x*A(x^8) = [1; 1/x, 1/x^7, 1/x^49, 1/x^343, ..., 1/x^(7^(n-1)), ...].

Original entry on oeis.org

1, -1, 1, -1, 1, -1, 1, -1, 2, -3, 4, -5, 6, -7, 8, -10, 13, -17, 22, -28, 35, -43, 53, -66, 83, -105, 133, -168, 211, -264, 330, -413, 518, -651, 819, -1030, 1294, -1624, 2037, -2555, 3206, -4025, 5055, -6349, 7973, -10010, 12565, -15771, 19796, -24851, 31200, -39173, 49183, -61748, 77519, -97315, 122166
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2004

Keywords

Crossrefs

Programs

  • Maple
    nmax:=57: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101917(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^7)),x,k+1); for n from 0 to k do x(n):=coeff(f(x),x,n) od: A101917(k):=x(k): od: seq(A101917(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    m = 57; A[] = 0; Do[A[x] = 1/(1 + x A[x^7]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    a(n)=local(A);A=1-x;for(i=1,n\7+1, A=1/(1+x*subst(A,x,x^7)+x*O(x^n)));polcoeff(A,n,x)
    
  • PARI
    a(n)=local(M=contfracpnqn(concat(1, vector(ceil(log(n+1)/log(7))+1,n,1/x^(7^(n-1)))))); polcoeff(M[1,1]/M[2,1]+x*O(x^(8*n+1)),8*n+1)

Formula

This was conjectured to have g.f. (1+x^7) / (1+x+x^7) by Ralf Stephan, May 17 2007, but this is wrong. This g.f. produces a sequence which differs at a(57) = -153367. The g.f. gives a(57) = -153366. - Johannes W. Meijer, Aug 08 2011
a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/7)} a(k) * a(n-7*k-1). - Ilya Gutkovskiy, Mar 01 2022

A101914 G.f. satisfies: A(x) = 1/(1 + x*A(x^4)) and also the continued fraction: 1 + x*A(x^5) = [1; 1/x, 1/x^4, 1/x^16, 1/x^64, ..., 1/x^(4^(n-1)), ...].

Original entry on oeis.org

1, -1, 1, -1, 1, 0, -1, 2, -3, 3, -2, 0, 3, -6, 8, -8, 5, 1, -9, 17, -22, 20, -10, -8, 31, -51, 60, -50, 16, 38, -100, 150, -163, 119, -11, -147, 315, -432, 433, -268, -70, 522, -964, 1222, -1118, 542, 484, -1756, 2887, -3385, 2793, -879, -2176, 5678, -8472, 9186, -6672, 542, 8372, -17816, 24384, -24350, 14952
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2004

Keywords

Comments

Sequence appears to have a rational g.f. - Ralf Stephan, May 17 2007
The conjecture is wrong. The g.f. is dependent on the number of terms. With twenty terms the g.f. is (1 + x^4)/(1 + x + x^4). - Johannes W. Meijer, Aug 08 2011

Crossrefs

Programs

  • Maple
    nmax:=62: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101914(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^4)),x,k+1); for n from 0 to k do x(n):=coeff(f(x),x,n) od: A101914(k):=x(k): od: seq(A101914(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    m = 63; A[] = 0; Do[A[x] = 1/(1 + x A[x^4]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    a(n)=local(A);A=1-x;for(i=1,n\4+1, A=1/(1+x*subst(A,x,x^4)+x*O(x^n)));polcoeff(A,n,x)
    
  • PARI
    a(n)=local(M=contfracpnqn(concat(1, vector(ceil(log(n+1)/log(4))+1,n,1/x^(4^(n-1)))))); polcoeff(M[1,1]/M[2,1]+x*O(x^(5*n+1)),5*n+1)

Formula

a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/4)} a(k) * a(n-4*k-1). - Ilya Gutkovskiy, Mar 01 2022

A101916 G.f. satisfies: A(x) = 1/(1 + x*A(x^6)) and also the continued fraction: 1+x*A(x^7) = [1;1/x,1/x^6,1/x^36,1/x^216,...,1/x^(6^(n-1)),...].

Original entry on oeis.org

1, -1, 1, -1, 1, -1, 1, 0, -1, 2, -3, 4, -5, 5, -4, 2, 1, -5, 10, -15, 19, -21, 20, -15, 5, 10, -29, 50, -70, 85, -90, 80, -51, 1, 69, -154, 244, -324, 375, -376, 307, -153, -91, 414, -788, 1163, -1469, 1621, -1529, 1115, -328, -833, 2299, -3916, 5440, -6550, 6874, -6039, 3741, 170, -5600, 12135, -18990, 25008
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2004

Keywords

Comments

This sequence resembles the series expansion of B(x) = (1+x^6)/(1+x+x^6). The first difference occurs at a(43) = 415 versus a(43) = 414. - Johannes W. Meijer, Aug 08 2011

Crossrefs

Programs

  • Maple
    nmax:=63: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(a(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^6)),x,k+1); for n from 0 to k do x(n):=coeff(f(x),x,n) od: a(k):=x(k): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
  • PARI
    a(n)=local(A);A=1-x;for(i=1,n\6+1, A=1/(1+x*subst(A,x,x^6)+x*O(x^n)));polcoeff(A,n,x)
    
  • PARI
    a(n)=local(M=contfracpnqn(concat(1, vector(ceil(log(n+1)/log(6))+1,n,1/x^(6^(n-1)))))); polcoeff(M[1,1]/M[2,1]+x*O(x^(7*n+1)),7*n+1)

Formula

a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/6)} a(k) * a(n-6*k-1). - Ilya Gutkovskiy, Mar 01 2022
Showing 1-4 of 4 results.