A102001 A weighted tribonacci, (1,2,4).
1, 3, 9, 19, 49, 123, 297, 739, 1825, 4491, 11097, 27379, 67537, 166683, 411273, 1014787, 2504065, 6178731, 15246009, 37619731, 92826673, 229050171, 565182441, 1394589475, 3441155041, 8491063755, 20951731737, 51698479411, 127566197905, 314770083675
Offset: 1
Examples
a(6) = 123 since M^6 * [1 0 0] = [123 98 76]. a(6) = 123 = 49 + 2*19 + 4*9 = a(5) + 2*a(4) + 4*a(3).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 19.
- Index entries for linear recurrences with constant coefficients, signature (1,2,4).
Programs
-
Mathematica
nn=20; a=(1-(2x)^3)/(1-2x); b=x (1-(2x)^3)/(1-2x); CoefficientList[Series[a/(1-b),{x,0,nn}], x] (* Geoffrey Critzer, Feb 01 2012 *) LinearRecurrence[{1,2,4},{1,3,9},40] (* Harvey P. Dale, Nov 02 2016 *)
-
PARI
a(n)=([0,1,0; 0,0,1; 4,2,1]^(n-1)*[1;3;9])[1,1] \\ Charles R Greathouse IV, Feb 28 2017
Formula
a(n) = a(n-1) + 2*a(n-2) + 4*a(n-3), n>3. a(n) = left term in M^n * [1 0 0], where M = the 3 X 3 matrix [1 1 1 / 2 0 0 / 0 2 0].
a(n) = Sum{k=0..n} T(n-k, k)2^k, T(n, k) = trinomial coefficients (A027907). - Paul Barry, Feb 15 2005
G.f.: x*(1+2*x+4*x^2) / (1-x-2*x^2-4*x^3). - Geoffrey Critzer, Feb 01 2012, corrected by Armend Shabani, Feb 28 2017
G.f.: 1/(1-x-2*x^2-4*x^3), including a(0)=1. - R. J. Mathar, Dec 08 2017
Comments