cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102002 Weighted tribonacci (1,2,4), companion to A102001.

Original entry on oeis.org

1, 7, 13, 31, 85, 199, 493, 1231, 3013, 7447, 18397, 45343, 111925, 276199, 681421, 1681519, 4149157, 10237879, 25262269, 62334655, 153810709, 379529095, 936489133, 2310790159, 5701884805, 14069421655, 34716351901, 85662734431, 211373124853, 521564001319
Offset: 1

Views

Author

Gary W. Adamson, Dec 23 2004

Keywords

Comments

a(n)/a(n-1) tends to 2.46750385...an eigenvalue of M and a root of the characteristic polynomial x^3 - x^2 - 2x - 4. A102001 is generated from [1 1 1 / 2 0 0 / 0 2 0] but has the same characteristic polynomial and recursive multipliers (1,2,4). A101000 uses the recursive multipliers (1,2,4,8).

Examples

			a(6) = 199 = 85 + 2*31 + 4*13 = a(5) + 2*a(4) + 4*a(3).
a(6) = 199 since M^6 * [1 1 1] = [85 199 493] = [a(5) a(6) a(7)].
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,4}, {1,7,13}, 50] (* Harvey P. Dale, Apr 28 2012 *)
  • Sage
    from sage.combinat.sloane_functions import recur_gen3
    it = recur_gen3(1,1,1,1,2,4)
    [next(it) for i in range(32)]
    # Zerinvary Lajos, Jun 25 2008

Formula

a(n) = a(n-1) + 2*a(n-2) + 4*a(n-3), a>3. a(n) = center term in M^n * [1 1 1], where M = the 3X3 matrix [0 1 0 / 0 0 1 / 4 2 1]; M^n * [1 1 1] = [a(n-1) a(n) a(n+1)].
G.f.: -x*(4*x^2+6*x+1)/(4*x^3+2*x^2+x-1). [Harvey P. Dale, Apr 28 2012]

Extensions

More terms from Harvey P. Dale, Apr 28 2012