A102002 Weighted tribonacci (1,2,4), companion to A102001.
1, 7, 13, 31, 85, 199, 493, 1231, 3013, 7447, 18397, 45343, 111925, 276199, 681421, 1681519, 4149157, 10237879, 25262269, 62334655, 153810709, 379529095, 936489133, 2310790159, 5701884805, 14069421655, 34716351901, 85662734431, 211373124853, 521564001319
Offset: 1
Examples
a(6) = 199 = 85 + 2*31 + 4*13 = a(5) + 2*a(4) + 4*a(3). a(6) = 199 since M^6 * [1 1 1] = [85 199 493] = [a(5) a(6) a(7)].
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,4).
Programs
-
Mathematica
LinearRecurrence[{1,2,4}, {1,7,13}, 50] (* Harvey P. Dale, Apr 28 2012 *)
-
Sage
from sage.combinat.sloane_functions import recur_gen3 it = recur_gen3(1,1,1,1,2,4) [next(it) for i in range(32)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = a(n-1) + 2*a(n-2) + 4*a(n-3), a>3. a(n) = center term in M^n * [1 1 1], where M = the 3X3 matrix [0 1 0 / 0 0 1 / 4 2 1]; M^n * [1 1 1] = [a(n-1) a(n) a(n+1)].
G.f.: -x*(4*x^2+6*x+1)/(4*x^3+2*x^2+x-1). [Harvey P. Dale, Apr 28 2012]
Extensions
More terms from Harvey P. Dale, Apr 28 2012
Comments