A102037 Triangle of BitAnd(BitNot(n), k).
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 2, 2, 4, 4, 6, 6, 0, 0, 0, 1, 0, 1, 4, 5, 4, 5, 0, 1, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0
Offset: 0
Examples
Table starts: [0] 0; [1] 0, 0; [2] 0, 1, 0; [3] 0, 0, 0, 0; [4] 0, 1, 2, 3, 0; [5] 0, 0, 2, 2, 0, 0; [6] 0, 1, 0, 1, 0, 1, 0; [7] 0, 0, 0, 0, 0, 0, 0, 0; [8] 0, 1, 2, 3, 4, 5, 6, 7, 0; [9] 0, 0, 2, 2, 4, 4, 6, 6, 0, 0.
Links
- Eric Weisstein's World of Mathematics, Sierpinski Sieve
- Wikipedia, Converse nonimplication.
Crossrefs
Programs
-
Julia
using IntegerSequences A102037Row(n) = [Bits("CNIMP", n, k) for k in 0:n] for n in 0:20 println(A102037Row(n)) end # Peter Luschny, Sep 25 2021
-
Maple
with(Bits): cnimp := (n, k) -> And(Not(n), k): seq(print(seq(cnimp(n,k), k=0..n)), n = 0..12); # Peter Luschny, Sep 25 2021
Comments