A102054 Triangular matrix, read by rows, where T(n,k) = T(n-1,k) - [T^-1](n-1,k-1); also equals the matrix inverse of A060083 (Euler polynomials).
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 4, -2, 4, 1, 1, -13, 26, -10, 5, 1, 1, 142, -229, 116, -25, 6, 1, 1, -1931, 3181, -1567, 371, -49, 7, 1, 1, 36296, -59700, 29464, -6922, 952, -84, 8, 1, 1, -893273, 1469380, -725108, 170398, -23358, 2100, -132, 9, 1, 1, 27927346, -45938639, 22669816, -5327198, 730252, -65526, 4152
Offset: 0
Examples
T(5,3) = -10 = T(4,3) - A060083(4,2) = 4 - 14. T(6,2) = -229 = T(5,2) - A060083(5,1) = 26 - 255. Rows begin: [1], [1,1], [1,2,1], [1,1,3,1], [1,4,-2,4,1], [1,-13,26,-10,5,1], [1,142,-229,116,-25,6,1], [1,-1931,3181,-1567,371,-49,7,1], [1,36296,-59700,29464,-6922,952,-84,8,1],... The matrix inverse is equal to A060083: [1], [ -1,1], [1,-2,1], [ -3,5,-3,1], [17,-28,14,-4,1], [ -155,255,-126,30,-5,1],...
Programs
-
PARI
{T(n,k)=local(M=matrix(n+1,n+1));M[1,1]=1;if(n>0,M[2,1]=1;M[2,2]=1); for(r=3,n+1, for(c=1,r,M[r,c]=if(c==1,M[r-1,1], if(c==r,1,M[r,c]=M[r-1,c]-((matrix(r-1,r-1,i,j,M[i,j]))^-1)[r-1,c-1])))); return(M[n+1,k+1])}
Formula
T(n, k) = T(n-1, k) - A060083(n-1, k-1), for n>0, with T(0, 0)=1.
Comments