cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A102055 Column 1 of A102054, the matrix inverse of A060083 (Euler polynomials).

Original entry on oeis.org

1, 2, 1, 4, -13, 142, -1931, 36296, -893273, 27927346, -1081725559, 50861556172, -2854289486309, 188475382997654, -14467150771771043, 1277417937676246672, -128570745743431055281, 14632875988040732946106, -1869882665740777942166543, 266593648798424693540514836
Offset: 0

Views

Author

Paul D. Hanna, Dec 28 2004

Keywords

Comments

1-a(n+1) equals the n-th partial sum of the Genocchi numbers (A001469).

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+2,n+2));M[1,1]=1;if(n>0,M[2,1]=1;M[2,2]=1); for(r=3,n+2, for(c=1,r,M[r,c]=if(c==1,M[r-1,1], if(c==r,1,M[r,c]=M[r-1,c]-((matrix(r-1,r-1,i,j,M[i,j]))^-1)[r-1,c-1])))); return(if(n==0,1,M[n+2,2]))}

Formula

a(n) = 1 - Sum_{k=1, n} A001469(k) for n>0, with a(0)=1.
This sequence's twin numbers are given in A133135. - Paul Curtz, Aug 07 2008

A102056 Column 2 of A102054, the matrix inverse of A060083 (Euler polynomials).

Original entry on oeis.org

1, 3, -2, 26, -229, 3181, -59700, 1469380, -45938639, 1779367231, -83663906454, 4695118012798, -310029578255977, 23797509154723361, -2101268283286737704, 211490399673452191176, -24070116208693613274035, 3075833697885980827017235, -438528974913900528707713514
Offset: 0

Views

Author

Paul D. Hanna, Dec 28 2004

Keywords

Crossrefs

Programs

  • PARI
    
    				

A060083 Coefficients of even-indexed Euler polynomials (rising powers without zeros).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -3, 5, -3, 1, 17, -28, 14, -4, 1, -155, 255, -126, 30, -5, 1, 2073, -3410, 1683, -396, 55, -6, 1, -38227, 62881, -31031, 7293, -1001, 91, -7, 1, 929569, -1529080, 754572, -177320, 24310, -2184, 140, -8, 1, -28820619
Offset: 0

Views

Author

Wolfdieter Lang, Mar 29 2001

Keywords

Comments

E(2*n,1/2)*(-4)^n = A000364(n) (signless Euler numbers without zeros).

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

Crossrefs

A060082 (falling powers).
Matrix inverse is A102054. Column 0 is A001469 (Genocchi numbers).

Programs

  • Mathematica
    t[n_, k_] := Binomial[2*n, 2*k]*2*(n - k)*EulerE[2*(n - k) - 1, 0]/(2*k + 1); t[n_, n_] = 1; Table[t[n, k], {n, 0, 9}, {k, 0, n }] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    {T(n,k)=local(X=x+x*O(x^(2*n)),Y=y+y*O(y^(2*k+1))); (2*n)!*polcoeff(polcoeff((cosh(X*Y)*(Y-1)+ exp(X*Y)/(exp(X)+1)+exp(-X*Y)/(exp(-X)+1))/Y,2*n,x),2*k,y)} (Hanna)

Formula

E(2*n, x)= sum(a(n, m)*x^(2*m+1), m=0..n-1) + x^(2*n), n >= 1; E(0, x)=1.
T(n, k) = A102054(n, k+1) - A102054(n+1, k+1), where A102054 is matrix inverse. E.g.f.: A(x^2, y^2) = [cosh(xy)*(y-1) + exp(xy)/(exp(x)+1) + exp(-xy)/(exp(-x)+1)]/y. - Paul D. Hanna, Dec 28 2004
T(n,k) = 1/(2*k+1)*binomial(2*n,2*k)*A001469(n-k) for 0 <= k <= n-1.
Let F(n,x) = Sum_{k=0..n-1} binomial(n-k-1,k)*x^k be a Fibonacci polynomial (see A011973 for coefficients). Then F(2*n,x) = -Sum_{k=0..n-1} T(n,k)*F(2*k+1,x). For example, F(8,x) = -17*F(1,x) + 28*F(3,x) - 14*F(5,x) + 4*F(7,x). See Cigler, Corollary 1.3. - Peter Bala, Mar 14 2012
Showing 1-3 of 3 results.