A102055
Column 1 of A102054, the matrix inverse of A060083 (Euler polynomials).
Original entry on oeis.org
1, 2, 1, 4, -13, 142, -1931, 36296, -893273, 27927346, -1081725559, 50861556172, -2854289486309, 188475382997654, -14467150771771043, 1277417937676246672, -128570745743431055281, 14632875988040732946106, -1869882665740777942166543, 266593648798424693540514836
Offset: 0
-
{a(n)=local(M=matrix(n+2,n+2));M[1,1]=1;if(n>0,M[2,1]=1;M[2,2]=1); for(r=3,n+2, for(c=1,r,M[r,c]=if(c==1,M[r-1,1], if(c==r,1,M[r,c]=M[r-1,c]-((matrix(r-1,r-1,i,j,M[i,j]))^-1)[r-1,c-1])))); return(if(n==0,1,M[n+2,2]))}
A102054
Triangular matrix, read by rows, where T(n,k) = T(n-1,k) - [T^-1](n-1,k-1); also equals the matrix inverse of A060083 (Euler polynomials).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 4, -2, 4, 1, 1, -13, 26, -10, 5, 1, 1, 142, -229, 116, -25, 6, 1, 1, -1931, 3181, -1567, 371, -49, 7, 1, 1, 36296, -59700, 29464, -6922, 952, -84, 8, 1, 1, -893273, 1469380, -725108, 170398, -23358, 2100, -132, 9, 1, 1, 27927346, -45938639, 22669816, -5327198, 730252, -65526, 4152
Offset: 0
T(5,3) = -10 = T(4,3) - A060083(4,2) = 4 - 14.
T(6,2) = -229 = T(5,2) - A060083(5,1) = 26 - 255.
Rows begin:
[1],
[1,1],
[1,2,1],
[1,1,3,1],
[1,4,-2,4,1],
[1,-13,26,-10,5,1],
[1,142,-229,116,-25,6,1],
[1,-1931,3181,-1567,371,-49,7,1],
[1,36296,-59700,29464,-6922,952,-84,8,1],...
The matrix inverse is equal to A060083:
[1],
[ -1,1],
[1,-2,1],
[ -3,5,-3,1],
[17,-28,14,-4,1],
[ -155,255,-126,30,-5,1],...
-
{T(n,k)=local(M=matrix(n+1,n+1));M[1,1]=1;if(n>0,M[2,1]=1;M[2,2]=1); for(r=3,n+1, for(c=1,r,M[r,c]=if(c==1,M[r-1,1], if(c==r,1,M[r,c]=M[r-1,c]-((matrix(r-1,r-1,i,j,M[i,j]))^-1)[r-1,c-1])))); return(M[n+1,k+1])}
A102056
Column 2 of A102054, the matrix inverse of A060083 (Euler polynomials).
Original entry on oeis.org
1, 3, -2, 26, -229, 3181, -59700, 1469380, -45938639, 1779367231, -83663906454, 4695118012798, -310029578255977, 23797509154723361, -2101268283286737704, 211490399673452191176, -24070116208693613274035, 3075833697885980827017235, -438528974913900528707713514
Offset: 0
A004172
Triangle of coefficients of Euler polynomials E_2n(x) (exponents in increasing order).
Original entry on oeis.org
1, 0, -1, 1, 0, 1, 0, -2, 1, 0, -3, 0, 5, 0, -3, 1, 0, 17, 0, -28, 0, 14, 0, -4, 1, 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1, 0, 2073, 0, -3410, 0, 1683, 0, -396, 0, 55, 0, -6, 1, 0, -38227, 0, 62881, 0, -31031, 0, 7293, 0, -1001, 0, 91, 0, -7, 1, 0, 929569, 0
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
A060082
Coefficients of even-indexed Euler polynomials (falling powers without zeros).
Original entry on oeis.org
1, 1, -1, 1, -2, 1, 1, -3, 5, -3, 1, -4, 14, -28, 17, 1, -5, 30, -126, 255, -155, 1, -6, 55, -396, 1683, -3410, 2073, 1, -7, 91, -1001, 7293, -31031, 62881, -38227, 1, -8, 140, -2184, 24310, -177320, 754572, -1529080, 929569, 1, -9, 204, -4284, 67626, -753610, 5497596, -23394924, 47408019
Offset: 0
E(0,x) = 1.
E(2,x) = x^2 - x.
E(4,x) = x^4 - 2*x^3 + x.
E(6,x) = x^6 - 3*x^5 + 5*x^3 - 3*x.
E(8,x) = x^8 - 4*x^7 + 14*x^5 - 28*x^3 + 17*x.
E(10,x) = x^10 - 5*x^9 + 30*x^7 - 126*x^5 + 255*x^3 - 155*x.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
E(2n, 1/2)*(-4)^n =
A000364(n) (signless Euler numbers without zeros).
-E(2n, -1/2)*(-4)^n/3 =
A076552(n), -E(2n, 1/3)*(-9)^n/2 =
A002114(n).
-
Table[ CoefficientList[ EulerE[2*n, x], x] // Reverse // DeleteCases[#, 0]&, {n, 0, 9}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
-
{B(n,v='x)=sum(i=0,n,binomial(n,i)*bernfrac(i)*v^(n-i))} E(n,v='x)=2/(n+1)*(B(n+1,v)-2^(n+1)*B(n+1,v/2)) \\ Ralf Stephan, Nov 05 2004
A141684
Triangle read by rows formed from Euler polynomials: p(x,n) = if(n mod 2 = 1, 2^(1 + ((n - 1)/2))*EulerE(n, x), EulerE(n, x)); t(n,m) = Coefficients(p(x,n)).
Original entry on oeis.org
1, -1, 2, 0, -1, 1, 1, 0, -6, 4, 0, 1, 0, -2, 1, -4, 0, 20, 0, -20, 8, 0, -3, 0, 5, 0, -3, 1, 34, 0, -168, 0, 140, 0, -56, 16, 0, 17, 0, -28, 0, 14, 0, -4, 1, -496, 0, 2448, 0, -2016, 0, 672, 0, -144, 32, 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1
Offset: 1
{ 1},
{ -1, 2},
{ 0, -1, 1},
{ 1, 0, -6, 4},
{ 0, 1, 0, -2, 1},
{ -4, 0, 20, 0, -20, 8},
{ 0, -3, 0, 5, 0, -3, 1},
{ 34, 0, -168, 0, 140, 0, -56, 16},
{ 0, 17, 0, -28, 0, 14, 0, -4, 1},
{-496, 0, 2448, 0, -2016, 0, 672, 0, -144, 32},
{ 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1}
-
T[x_, n_] := If[Mod[n, 2] == 1, 2^(1 + ((n - 1)/2))*EulerE[n, x], EulerE[n, x]]; Table[Expand[T[x, n]], {n, 0, 10}]; Table[CoefficientList[T[x, n], x], {n, 0, 10}]; Flatten[%]
A171683
Triangle T(n,k) which contains 4*n!*2^floor((n+1)/2) times the coefficient [t^n x^k] exp(t*x)/(3 + exp(2*t)) in row n, column k.
Original entry on oeis.org
1, -1, 2, -1, -2, 2, 1, -6, -6, 4, 10, 4, -12, -8, 4, 26, 100, 20, -40, -20, 8, -154, 156, 300, 40, -60, -24, 8, -1646, -2156, 1092, 1400, 140, -168, -56, 16, 1000, -13168, -8624, 2912, 2800, 224, -224, -64, 16, 92744, 18000, -118512, -51744, 13104, 10080, 672, -576, -144, 32
Offset: 0
The triangle starts in row n=0, columns 0<=k <=n as
1;
-1, 2;
-1, -2, 2;
1, -6, -6, 4;
10, 4, -12, -8, 4;
26, 100, 20, -40, -20, 8;
-154, 156, 300, 40, -60, -24, 8;
-1646, -2156, 1092, 1400, 140, -168, -56, 16;
1000, -13168, -8624, 2912, 2800, 224, -224, -64, 16;
92744, 18000, -118512, -51744, 13104, 10080, 672, -576, -144, 32;
...
-
Clear[p, g, m, a];
m = 1;
p[t_] = 2^(m + 1)*Exp[t*x]/(-1 + 2^(m + 1) + Exp[2^m*t]) Table[ FullSimplify[ExpandAll[2^ Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], {n, 0, 10}]
a = Table[CoefficientList[FullSimplify[ExpandAll[2^Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]
Flatten[a]
Number of variables in use reduced from 4 to 2, keyword:tabl added - The Assoc. Eds. of the OEIS, Oct 20 2010
Showing 1-7 of 7 results.
Comments