cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102058 Expansion of e.g.f. sin(arctanh(x)), odd powers only.

Original entry on oeis.org

1, 1, 5, 5, -5815, -956375, -172917875, -38579649875, -10713341611375, -3663118565923375, -1519935859717136875, -754429769289426936875, -442113820341129750734375, -302333022017412857174234375, -238762676857713027642764171875, -215766282905942334008224968671875
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Examples

			sin(arctanh(x)) = x + x^3/3! + 5x^5/5! + 5x^7/7! - 5815x^9/9! - ...
		

Crossrefs

Bisection of A002019.

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m);  b:=Coefficients(R!(1+Sin(Argtanh(x)))); [Factorial(n-1)*b[n]: n in [2..m by 2]]; // Vincenzo Librandi, Aug 16 2018
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[Sin[ArcTanh[x]],{x,0,2*nmax}],x] * Range[0,2*nmax-1]!)[[n]],{n,2,2*nmax,2}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(2*n-1)!*sum((-1)^(i)*sum((stirling1(k+2*i+1,2*i+1)*2^(k)* binomial(2*n-2,k+2*i))/(k+2*i+1)!,k,0,2*n-1-2*i-1),i,0,n-1); /* Vladimir Kruchinin, Dec 12 2011 */
    

Formula

a(n) = (2*n-1)!*Sum(i=0..n-1, (-1)^(i)*Sum(k=0..2*n-1-2*i-1, (stirling1(k+2*i+1,2*i+1)*2^(k)* binomial(2*n-2,k+2*i))/(k+2*i+1)!)). - Vladimir Kruchinin, Dec 12 2011