cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102128 a(1) = 1; a(n) = sum of previous terms which divide n.

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 2, 12, 2, 10, 2, 34, 2, 14, 2, 20, 2, 24, 2, 54, 2, 22, 2, 70, 2, 26, 2, 46, 2, 46, 2, 36, 2, 68, 2, 94, 2, 38, 2, 74, 2, 62, 2, 70, 2, 138, 2, 94, 2, 60, 2, 82, 2, 114, 2, 74, 2, 58, 2, 172, 2, 124, 2, 68, 2, 94, 2, 242, 2, 234, 2, 154, 2, 222, 2, 118, 2, 110, 2, 114, 2
Offset: 1

Views

Author

Leroy Quet, Feb 14 2005

Keywords

Examples

			Among the first 7 terms, the terms which divide 8 are 1, 1, 2, 4, 2 and 2.
So a(8) = 1 + 1 + 2 + 4 + 2 + 2 = 12.
		

Crossrefs

Cf. A088167.

Programs

  • Mathematica
    Nest[Function[{a, n}, Append[a, Total@ Select[a, Mod[n, #] == 0 &]]] @@ {#, Length@ # + 1} &, {1}, 80] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    up_to = 20000;
    A102128list(up_to) = { my(v=vector(up_to)); v[1] = 1; for(n=2,up_to,v[n] = sum(j=1,n-1,v[j]*!(n%v[j]))); (v); };
    v102128 = A102128list(up_to);
    A102128(n) = v102128[n]; \\ Antti Karttunen, Nov 10 2018

Formula

a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^a(k)/(1 - x^a(k)). - Ilya Gutkovskiy, Dec 11 2017

Extensions

More terms from John W. Layman, Mar 16 2005