A102215 Expansion of Pi^2/50 in golden base (i.e., in irrational base phi = (1 + sqrt(5))/2).
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1
Offset: 1
Examples
Pi^2/50 = 1/phi^4 + 1/phi^7 + 1/phi^9 + 1/phi^12 + ... thus the phinary expansion of Pi^2/50 is 0.0001001010010...
Links
- D. H. Bailey, A compendium of BBP-type formulas for mathematical constants.
- J. Borwein and M. Chamberland, A golden example.
Programs
-
Mathematica
Join[{0,0,0},RealDigits[Pi^2/50,GoldenRatio,120][[1]]] (* Harvey P. Dale, Nov 06 2011 *)
-
PARI
default(realprecision,1000); default(format,"g.28"); b=1.0/( (1+sqrt(5))/2 ); /* inverse base */ d=1.0; /* value of digit */ C=Pi^2/50; /* Number to be converted */ { for (n=1, 1000, d *= b; /* value of digit == b^n */ if ( d<=C, C-=d; print1("1, "); , /* else */ print1("0, "); ); );} C /* check remaining value (should be well within precision) */ /* Joerg Arndt, Jan 24 2011 */