cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102217 3-Suzanne numbers; composite multiples of 3 whose sum of prime factors with multiplicity is a multiple of 3.

Original entry on oeis.org

9, 24, 27, 42, 60, 72, 78, 81, 105, 114, 126, 132, 150, 180, 186, 192, 195, 204, 216, 222, 231, 234, 243, 258, 276, 285, 315, 330, 336, 342, 348, 357, 366, 375, 378, 396, 402, 429, 438, 450, 465, 474, 480, 483, 492, 510, 540, 555, 558, 564, 576, 582, 585
Offset: 1

Views

Author

Eric W. Weisstein, Dec 30 2004

Keywords

Comments

Composite numbers k such that the sum of digits of k (A007953) and the sum of sums of digits of the prime factors of k (taken with multiplicity, A118503) are both divisible by 3. - Amiram Eldar, Apr 23 2021
The new secondary definition is equal to the original because taking the decimal digit sum preserves congruence modulo 3. This is a multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jun 08 2024

Examples

			From _Antti Karttunen_, Jun 08 2024: (Start)
42 = 2*3*7 is a term as it is a multiple of 3, and also 2+3+7 = 12 is a multiple of 3.
60 = 2*2*3*5 is a term is it is a multiple of 3, and also 2+2+3+5 = 12 is a multiple of 3.
(End)
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd ed., Cambridge University Press, 2005, p. 93.

Crossrefs

Subsequence of A177927.
Intersection of A008585 and A289142 without the initial 3.
Positions of multiples of 3 in A082299, after A082299(3).

Programs

  • Mathematica
    s[n_] := Plus @@ IntegerDigits[n]; f[p_, e_] := e*s[p]; sp[n_] := Plus @@ f @@@ FactorInteger[n]; suz3Q[n_] := CompositeQ[n] && And @@ Divisible[{s[n], sp[n]}, 3]; Select[Range[600], suz3Q] (* Amiram Eldar, Apr 23 2021 *)
  • PARI
    isA102217(n) = if(n<=3 || (n%3), 0, my(f=factor(n)); 0==(sum(i=1, #f~, f[i, 2]*sumdigits(f[i, 1]))%3)); \\ Antti Karttunen, Jun 08 2024
    
  • PARI
    isA102217(n) = (n>3 && !(n%3) && A373371(n)); \\ Antti Karttunen, Jun 08 2024

Formula

a(n) = 3*A289142(1+n). - Antti Karttunen, Jun 08 2024

Extensions

Alternative definition added and keyword:base removed by Antti Karttunen, Jun 08 2024