A102217 3-Suzanne numbers; composite multiples of 3 whose sum of prime factors with multiplicity is a multiple of 3.
9, 24, 27, 42, 60, 72, 78, 81, 105, 114, 126, 132, 150, 180, 186, 192, 195, 204, 216, 222, 231, 234, 243, 258, 276, 285, 315, 330, 336, 342, 348, 357, 366, 375, 378, 396, 402, 429, 438, 450, 465, 474, 480, 483, 492, 510, 540, 555, 558, 564, 576, 582, 585
Offset: 1
Keywords
Examples
From _Antti Karttunen_, Jun 08 2024: (Start) 42 = 2*3*7 is a term as it is a multiple of 3, and also 2+3+7 = 12 is a multiple of 3. 60 = 2*2*3*5 is a term is it is a multiple of 3, and also 2+2+3+5 = 12 is a multiple of 3. (End)
References
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd ed., Cambridge University Press, 2005, p. 93.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Michael Smith, Cousins of Smith Numbers: Monica and Suzanne Sets, Fibonacci Quarterly, Vol. 34, No. 2 (1996), pp. 102-104.
- Eric Weisstein's World of Mathematics, Suzanne Set.
Crossrefs
Programs
-
Mathematica
s[n_] := Plus @@ IntegerDigits[n]; f[p_, e_] := e*s[p]; sp[n_] := Plus @@ f @@@ FactorInteger[n]; suz3Q[n_] := CompositeQ[n] && And @@ Divisible[{s[n], sp[n]}, 3]; Select[Range[600], suz3Q] (* Amiram Eldar, Apr 23 2021 *)
-
PARI
isA102217(n) = if(n<=3 || (n%3), 0, my(f=factor(n)); 0==(sum(i=1, #f~, f[i, 2]*sumdigits(f[i, 1]))%3)); \\ Antti Karttunen, Jun 08 2024
-
PARI
isA102217(n) = (n>3 && !(n%3) && A373371(n)); \\ Antti Karttunen, Jun 08 2024
Formula
a(n) = 3*A289142(1+n). - Antti Karttunen, Jun 08 2024
Extensions
Alternative definition added and keyword:base removed by Antti Karttunen, Jun 08 2024
Comments