A102220 Triangular matrix, read by rows, equal to [2*I - A008459]^(-1), i.e., the matrix inverse of the difference of twice the identity matrix and the triangular matrix of squared binomial coefficients.
1, 1, 1, 5, 4, 1, 55, 45, 9, 1, 1077, 880, 180, 16, 1, 32951, 26925, 5500, 500, 25, 1, 1451723, 1186236, 242325, 22000, 1125, 36, 1, 87054773, 71134427, 14531391, 1319325, 67375, 2205, 49, 1, 6818444405, 5571505472, 1138150832, 103334336, 5277300, 172480, 3920, 64, 1
Offset: 0
Examples
Rows begin: [1], [1,1], [5,4,1], [55,45,9,1], [1077,880,180,16,1], [32951,26925,5500,500,25,1], [1451723,1186236,242325,22000,1125,36,1],... and equal the term-by-term product of column 0 with the squared binomial coefficients (A008459): [(1)1^2], [(1)1^2,(1)1^2], [(5)1^2,(1)2^2,(1)1^2], [(55)1^2,(5)3^2,(1)3^2,(1)1^2], [(1077)1^2,(55)4^2,(5)6^2,(1)4^2,(1)1^2],... The matrix inverse is [2*I - A008459]: [1], [ -1,1], [ -1,-4,1], [ -1,-9,-9,1], [ -1,-16,-36,-16,1],...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-i)*binomial(n, i)/i!, i=1..n)) end: T:= (n, k)-> binomial(n, k)^2*b(n-k)*(n-k)!: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 10 2019
-
Mathematica
nmax = 10; M = Inverse[2 IdentityMatrix[nmax+1] - Table[Binomial[n, k]^2, {n, 0, nmax}, {k, 0, nmax}]]; T[n_, k_] := M[[n+1, k+1]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
-
PARI
{T(n,k)=(matrix(n+1,n+1,i,j,if(i==j,2,0)-binomial(i-1,j-1)^2)^-1)[n+1,k+1]}
Comments