A102224 Column 0 of the matrix square of A102220, which equals the lower triangular matrix: [2*I - A008459]^(-1).
1, 2, 14, 200, 4814, 174752, 8909168, 606818060, 53211837134, 5838211285616, 783434682568664, 126221710572107900, 24043148814317769584, 5344827109234104188348, 1371307353540074156012828
Offset: 0
Keywords
Examples
Given A102221 = [1,1,5,55,1077,32951,1451723,87054773,...], then this sequence results from a type of self-convolution of A102221: a(2) = 14 = 1^2*1*5 + 2^2*1*1 + 1^2*5*1, a(3) = 200 = 1^2*1*55 + 3^2*1*5 + 3^2*5*1 + 1^2*55*1.
Programs
-
PARI
{a(n)=(matrix(n+1,n+1,i,j,if(i==j,2,0)-binomial(i-1,j-1)^2)^-2)[n+1,1]}
Formula
Sum_{n>=0} a(n)*x^n/n!^2 = 1/(2-BesselI(0,2*sqrt(x)))^2. - Vladeta Jovovic, Jul 17 2006
Comments