cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102230 Triangle, read by rows, where each column equals the convolution of A032349 with the prior column, starting with column 0 equal to A032349 shift right.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 24, 32, 9, 1, 172, 236, 76, 13, 1, 1360, 1896, 656, 136, 17, 1, 11444, 16116, 5828, 1348, 212, 21, 1, 100520, 142544, 53112, 13184, 2376, 304, 25, 1, 911068, 1298524, 494364, 128924, 25436, 3804, 412, 29, 1, 8457504, 12100952
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2005

Keywords

Comments

Row sums equal A027307; the self-convolution of the row sums form A032349. Column 0 equals A032349 shift right. Column 1 is A102231. This triangle is a variant of A100326.

Examples

			This triangle is generated by the recurrence:
T(n,k) = Sum_{i=0..n-k} T(i+1,0)*T(n-i-1,k-1) for n>k>0,
T(n,0) = Sum_{i=0..n-1} (2*i+1)*T(n-1,i) for n>0, with T(0,0)=1.
Rows begin:
[1],
[1,1],
[4,5,1],
[24,32,9,1],
[172,236,76,13,1],
[1360,1896,656,136,17,1],
[11444,16116,5828,1348,212,21,1],
[100520,142544,53112,13184,2376,304,25,1],...
Column 0 is formed from the partial sums of the prior row
after a term-by-term product with the odd numbers:
T(2,0) = 1*T(1,0) + 3*T(1,1) = 1*1 + 3*1 = 4.
T(3,0) = 1*T(2,0) + 3*T(2,1) + 5*T(2,2) = 1*4 + 3*5 + 5*1 = 24.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(n
    				

Formula

G.f.: A(x, y) = (1+x*F(x))/(1-x*y*F(x)) where F(x) is the g.f. of A032349 and satisfies F(x) = (1+x*F(x))^2/(1-x*F(x))^2.
Showing 1-1 of 1 results.