A102247 Number of partitions of n in which each odd part has odd multiplicity and each even part has even multiplicity.
1, 1, 0, 2, 2, 3, 2, 4, 7, 8, 8, 10, 17, 17, 20, 26, 39, 39, 46, 56, 77, 85, 96, 116, 154, 172, 190, 234, 289, 328, 364, 440, 532, 610, 670, 808, 957, 1091, 1204, 1432, 1675, 1905, 2110, 2476, 2867, 3255, 3608, 4184, 4837, 5451, 6050, 6960, 7980, 8961, 9972, 11370
Offset: 0
Examples
a(7) = 4 because we have 7, 322, 22111 and 1111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:=product((1+x^(2*i-1)-x^(4*i-2))/(1-x^(2*i)),i=1..40): gser:=series(g,x=0, 60): seq(coeff(gser,x,n),n=0..55); # Emeric Deutsch, Aug 23 2007 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(`if`(irem(i+j, 2)=0, b(n-i*j, i-1), 0), j=1..n/i) +b(n, i-1))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, May 31 2014
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)
Formula
G.f.: Product_{i>0} (1+x^(2*i-1)-x^(4*i-2))/(1-x^(2*i)).
a(n) ~ sqrt(Pi^2/3 + 4*log(phi)^2) * exp(sqrt((Pi^2/3 + 4*log(phi)^2)*n)) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016
Extensions
More terms from Emeric Deutsch, Aug 23 2007