cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102309 a(n) = Sum_{d divides n} moebius(d) * binomial(n/d,2).

Original entry on oeis.org

0, 0, 1, 3, 5, 10, 11, 21, 22, 33, 34, 55, 46, 78, 69, 92, 92, 136, 105, 171, 140, 186, 175, 253, 188, 290, 246, 315, 282, 406, 284, 465, 376, 470, 424, 564, 426, 666, 531, 660, 568, 820, 570, 903, 710, 852, 781, 1081, 760, 1155, 890, 1136, 996, 1378, 963, 1420, 1140, 1422, 1246
Offset: 0

Views

Author

Ralf Stephan, Jan 03 2005

Keywords

Comments

Zero followed by the Moebius transform of A000217. - R. J. Mathar, Jan 19 2009
Apparently, a(n-1) is the number of periodic complex Horadam orbits with period n, for n>2. - Nathaniel Johnston, Oct 04 2013
Also apparently, the first differences of A100448 (checked up to n=2000).

Crossrefs

Second column of triangle A020921.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(d)*binomial(n/d, 2), d=divisors(n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 18 2013
  • Mathematica
    a[n_] := Sum[MoebiusMu[d] Binomial[n/d, 2], {d, Divisors[n]}];
    a /@ Range[0, 60] (* Jean-François Alcover, Feb 04 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d) * binomial(n/d,2) ); /* Joerg Arndt, Feb 18 2013 */
    
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, moebius(k)*x^(2*k)/(1-x^k)^3))) \\ Seiichi Manyama, May 24 2021
    
  • Python
    from math import comb
    from sympy import mobius, divisors
    def A102309(n): return sum(mobius(d)*comb(n//d,2) for d in divisors(n,generator=True)) # Chai Wah Wu, May 09 2025

Formula

G.f.: Sum_{k>=1} mu(k) * x^(2*k)/(1 - x^k)^3. - Seiichi Manyama, May 24 2021
Sum_{k=1..n} a(k) ~ n^3 / (6*zeta(3)). - Amiram Eldar, Jun 08 2025