A100823 G.f.: Product_{k>0} (1+x^k)/((1-x^k)*(1+x^(3k))*(1+x^(5k))).
1, 2, 4, 7, 12, 19, 30, 46, 69, 101, 146, 208, 293, 408, 563, 768, 1040, 1397, 1864, 2470, 3254, 4261, 5550, 7192, 9277, 11911, 15229, 19391, 24597, 31085, 39150, 49142, 61489, 76702, 95401, 118324, 146362, 180573, 222226, 272826, 334173, 408394, 498022
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 46*x^7 + ... G.f. = q^-1 + 2*q^2 + 4*q^5 + 7*q^8 + 12*q^11 + 19*q^14 + 30*q^17 + 46*q^20 + ...
Links
- Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 2001 terms from Vaclav Kotesovec)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 17.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
series(product((1+x^k)/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))),k=1..100),x=0,100);
-
Mathematica
CoefficientList[ Series[ Product[(1 + x^k)/((1 - x^k)*(1 + x^(3k))*(1 + x^(5k))), {k, 100}], {x, 0, 45}], x] (* Robert G. Wilson v, Jan 12 2005 *) nmax = 50; CoefficientList[Series[Product[(1+x^(5*k-1))*(1+x^(5*k-2))*(1+x^(5*k-3))*(1+x^(5*k-4)) / ((1-x^(6*k))*(1-x^(3*k-1))*(1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^6] QPochhammer[ x^5, x^10] / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Mar 07 2016 *)
-
PARI
q='q+O('q^33); E(k)=eta(q^k); Vec( (E(2)*E(3)*E(5)) / (E(1)^2*E(6)*E(10)) ) \\ Joerg Arndt, Sep 01 2015
Formula
a(n) ~ exp(Pi*sqrt(37*n/5)/3) * sqrt(37) / (12*sqrt(5)*n). - Vaclav Kotesovec, Sep 01 2015
G.f.: (E(2)*E(3)*E(5)) / (E(1)^2*E(6)*E(10)) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015
Euler transform of period 30 sequence [ 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, ...]. - Michael Somos, Mar 07 2016
Expansion of chi(-x^3) * chi(-x^5) / phi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Mar 07 2016
Extensions
More terms from Robert G. Wilson v, Jan 12 2005
Offset corrected by Vaclav Kotesovec, Sep 01 2015
a(14) = 563 <- 562 corrected by Vaclav Kotesovec, Sep 01 2015
Comments