cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100823 G.f.: Product_{k>0} (1+x^k)/((1-x^k)*(1+x^(3k))*(1+x^(5k))).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 46, 69, 101, 146, 208, 293, 408, 563, 768, 1040, 1397, 1864, 2470, 3254, 4261, 5550, 7192, 9277, 11911, 15229, 19391, 24597, 31085, 39150, 49142, 61489, 76702, 95401, 118324, 146362, 180573, 222226, 272826, 334173, 408394, 498022
Offset: 0

Views

Author

Noureddine Chair, Jan 06 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 46*x^7 + ...
G.f. = q^-1 + 2*q^2 + 4*q^5 + 7*q^8 + 12*q^11 + 19*q^14 + 30*q^17 + 46*q^20 + ...
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))),k=1..100),x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^k)/((1 - x^k)*(1 + x^(3k))*(1 + x^(5k))), {k, 100}], {x, 0, 45}], x] (* Robert G. Wilson v, Jan 12 2005 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(5*k-1))*(1+x^(5*k-2))*(1+x^(5*k-3))*(1+x^(5*k-4)) / ((1-x^(6*k))*(1-x^(3*k-1))*(1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^6] QPochhammer[ x^5, x^10] / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Mar 07 2016 *)
  • PARI
    q='q+O('q^33); E(k)=eta(q^k);
    Vec( (E(2)*E(3)*E(5)) / (E(1)^2*E(6)*E(10)) ) \\ Joerg Arndt, Sep 01 2015

Formula

a(n) ~ exp(Pi*sqrt(37*n/5)/3) * sqrt(37) / (12*sqrt(5)*n). - Vaclav Kotesovec, Sep 01 2015
G.f.: (E(2)*E(3)*E(5)) / (E(1)^2*E(6)*E(10)) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015
Euler transform of period 30 sequence [ 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, ...]. - Michael Somos, Mar 07 2016
Expansion of chi(-x^3) * chi(-x^5) / phi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Mar 07 2016
a(n) - A035939(2*n + 1) = A122129(2*n + 1). - Michael Somos, Mar 07 2016

Extensions

More terms from Robert G. Wilson v, Jan 12 2005
Offset corrected by Vaclav Kotesovec, Sep 01 2015
a(14) = 563 <- 562 corrected by Vaclav Kotesovec, Sep 01 2015

A103259 Number of partitions of 2n prime to 3,5 with all odd parts occurring with even multiplicities. There is no restriction on the even parts.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 28, 40, 54, 72, 96, 126, 164, 212, 274, 350, 444, 560, 704, 878, 1092, 1352, 1668, 2048, 2506, 3056, 3714, 4500, 5436, 6552, 7872, 9436, 11280, 13456, 16012, 19014, 22532, 26648, 31452, 37052, 43572, 51148, 59940, 70128, 81922, 95548
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

This is also the sequence A103257/(theta_4(0,x^(15))).

Examples

			a(5) = 14 because 10 can be written as 8+2 = 8+1+1 = 4+4+2 = 4+4+1+1 = 4+2+2+2 = 4+2+2+1+1 = 4+2+1+1+1+1 = 4+1+1+1+1+1+1 = 2+2+2+2+2 = 2+2+2+2+1+1 = 2+2+2+1+1+1+1 = 2+2+1+1+1+1+1+1 = 2+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1.
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
  • PARI
    q='q+O('q^33); E(k)=eta(q^k);
    Vec( (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) ) \\ Joerg Arndt, Sep 01 2015

Formula

G.f.: (theta_4(0, x^3)*theta_4(0, x^5))/(theta_4(0, x)*theta_4(0, x^(15))).
G.f.: (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015
Maple program corrected by Vaclav Kotesovec, Sep 01 2015
Showing 1-2 of 2 results.