A102368 Smallest k>0 such that n^k + 1 is not prime.
3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2
Offset: 2
Keywords
Examples
n=10: 10^1+1=11=A000040(5), 10^2+1=101=A000040(26), but 10^3+1=1001=7*11*13, therefore a(10)=3.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Crossrefs
Cf. A070689: a(n) = 3.
Programs
-
Maple
A102368:= proc(n) if n::odd or not isprime(n+1) then 1 elif isprime(n^2+1) then 3 else 2 fi end proc; # Robert Israel, Jun 15 2014
-
Mathematica
sk[n_]:=Module[{k=1},While[PrimeQ[n^k+1],k++];k]; Array[sk,110,2] (* Harvey P. Dale, Apr 09 2016 *)
Comments