A102406 Number of Dyck paths of semilength n having no ascents of length 1 that start at an even level.
1, 0, 1, 2, 5, 14, 39, 114, 339, 1028, 3163, 9852, 31005, 98436, 314901, 1014070, 3284657, 10694314, 34979667, 114887846, 378750951, 1252865288, 4157150327, 13832926200, 46148704121, 154327715592, 517236429545, 1737102081962, 5845077156189, 19702791805126
Offset: 0
Keywords
Examples
a(3) = 2 because we have UUDUDD and UUUDDD, having no ascents of length 1 that start at an even level.
Links
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x+x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) )); // G. C. Greubel, Oct 31 2024 -
Maple
G:=(1+z+z^2-sqrt(1-2*z-5*z^2-2*z^3+z^4))/2/z/(1+z)^2: Gser:=series(G,z=0,32): 1,seq(coeff(Gser,z^n),n=1..29);
-
Mathematica
CoefficientList[Series[(1+x+x^2 -Sqrt[1-2*x-5*x^2-2*x^3+x^4])/(2*x*(1+x)^2), {x,0,40}], x] (* G. C. Greubel, Oct 31 2024 *)
-
SageMath
def A102406_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x+x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) ).list() A102406_list(30) # G. C. Greubel, Oct 31 2024
Formula
G.f.: (1+z+z^2 - sqrt(1-2*z-5*z^2-2*z^3+z^4))/(2*z*(1+z)^2).
(n+1)*a(n) -(n-3)*a(n-1) -(7*n-9)*a(n-2) -(7*n-12)*a(n-3) -n*a(n-4) +(n-4)*a(n-5) = 0. - R. J. Mathar, Jan 04 2017
Comments