cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102406 Number of Dyck paths of semilength n having no ascents of length 1 that start at an even level.

Original entry on oeis.org

1, 0, 1, 2, 5, 14, 39, 114, 339, 1028, 3163, 9852, 31005, 98436, 314901, 1014070, 3284657, 10694314, 34979667, 114887846, 378750951, 1252865288, 4157150327, 13832926200, 46148704121, 154327715592, 517236429545, 1737102081962, 5845077156189, 19702791805126
Offset: 0

Views

Author

Emeric Deutsch, Jan 06 2005

Keywords

Comments

Number of Łukasiewicz paths of length n having no level steps at an even level. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(3)=2 because we have UHD and U(2)DD, where U=(1,1), H=(1,0), D=(1,-1) and U(2)=(1,2). a(n)=A102404(n,0).
Number of Dyck n-paths with no descent of length 1 following an ascent of length 1. [David Scambler, May 11 2012]

Examples

			a(3) = 2 because we have UUDUDD and UUUDDD, having no ascents of length 1 that start at an even level.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1+x+x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) )); // G. C. Greubel, Oct 31 2024
    
  • Maple
    G:=(1+z+z^2-sqrt(1-2*z-5*z^2-2*z^3+z^4))/2/z/(1+z)^2: Gser:=series(G,z=0,32): 1,seq(coeff(Gser,z^n),n=1..29);
  • Mathematica
    CoefficientList[Series[(1+x+x^2 -Sqrt[1-2*x-5*x^2-2*x^3+x^4])/(2*x*(1+x)^2), {x,0,40}], x] (* G. C. Greubel, Oct 31 2024 *)
  • SageMath
    def A102406_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x+x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) ).list()
    A102406_list(30) # G. C. Greubel, Oct 31 2024

Formula

G.f.: (1+z+z^2 - sqrt(1-2*z-5*z^2-2*z^3+z^4))/(2*z*(1+z)^2).
(n+1)*a(n) -(n-3)*a(n-1) -(7*n-9)*a(n-2) -(7*n-12)*a(n-3) -n*a(n-4) +(n-4)*a(n-5) = 0. - R. J. Mathar, Jan 04 2017