A102407 Number of Dyck paths of semilength n having no ascents of length 1 that start at an odd level.
1, 1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558, 17206, 53872, 170298, 542778, 1742308, 5627698, 18277698, 59652952, 195541494, 643506310, 2125255036, 7041631854, 23400092142, 77971706848, 260458050034, 872040564850, 2925902656644, 9836517749658, 33130048199466
Offset: 0
Keywords
Examples
a(3)=4 because among the five Dyck paths of semilength 3 only UUDUDD has an ascent of length 1 that starts at an odd level; here U=(1,1) and D=(1,-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1828
- Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks, arXiv:2308.09344 [math.CO], 2023.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Emeric Deutsch, An involution on Dyck paths and its consequences, Discrete Math., 204 (1999), no. 1-3, 163-166.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Index entries for sequences related to Łukasiewicz
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x-x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x) )); // G. C. Greubel, Oct 31 2024 -
Maple
G:=(1+z-z^2-sqrt(1-2*z-5*z^2-2*z^3+z^4))/2/z: Gser:=series(G,z=0,31): 1,seq(coeff(Gser,z^n),n=1..29); f:=proc(n) local i,j; add( (1/(n-j))*binomial(n-j,j)* add( binomial(n-2*j,i)*binomial(j+i, n-2*j-i+1), i=0..n-2*j), j=0..n/2 ); end; # N. J. A. Sloane, Dec 06 2007
-
Mathematica
CoefficientList[Series[(1+x-x^2 -Sqrt[1-2 x -5 x^2 -2 x^3 +x^4])/(2 x), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
-
SageMath
def A102407_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x-x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x) ).list() A102407_list(30) # G. C. Greubel, Oct 31 2024
Formula
G.f.: (1+z-z^2 - sqrt(1-2*z-5*z^2-2*z^3+z^4))/(2*z).
a(n) = Sum_{j=0..floor(n/2)} Sum_{i=0..n-2*j} (1/(n-j))*binomial(n-j,j) * binomial(n-2*j,i)*binomial(j+i, n-2*j-i+1) (from Sapounakis et al.). - N. J. A. Sloane, Dec 06 2007
From Gary W. Adamson, Jul 11 2011: (Start)
Let M = the following infinite square production matrix (where the main diagonal is (1,0,1,0,1,0,...)):
1, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 0, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 0, ...
...
a(n) = top left term in M^n, a(n+1) = sum of top row terms in M^n. Example: top row of M^5 = (26, 19, 16, 7, 3, 1, 0, 0, 0, ...) where 26 = a(5) and 72 = a(6) = (26 + 19 + 16 + 7 + 3 + 1). (End)
(n+1)*a(n) -(2*n-1)*a(n-1) -5*(n-2)*a(n-2) -(2*n-7)*a(n-3) +(n-5)*a(n-4) = 0. - R. J. Mathar, Jan 04 2017
Comments