A102405
Triangle read by rows: T(n,k) is number of Dyck paths of semilength n having k ascents of length 1 that start at an odd level.
Original entry on oeis.org
1, 1, 2, 4, 1, 10, 3, 1, 26, 12, 3, 1, 72, 41, 15, 3, 1, 206, 143, 58, 18, 3, 1, 606, 492, 231, 76, 21, 3, 1, 1820, 1693, 891, 335, 95, 24, 3, 1, 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1, 17206, 20040, 12870, 5848, 2061, 591, 136, 30, 3, 1, 53872, 69033, 48318, 23858, 9143, 2850, 743, 158, 33, 3, 1
Offset: 0
T(4,1) = 3 because we have UDUUD(U)DD, UUD(U)DDUD and UUUDD(U)DD, where U=(1,1), D=(1,-1) and the ascents of length 1 that start at an odd level are shown between parentheses.
Triangle starts:
00 : 1;
01 : 1;
02 : 2;
03 : 4, 1;
04 : 10, 3, 1;
05 : 26, 12, 3, 1;
06 : 72, 41, 15, 3, 1;
07 : 206, 143, 58, 18, 3, 1;
08 : 606, 492, 231, 76, 21, 3, 1;
09 : 1820, 1693, 891, 335, 95, 24, 3, 1;
10 : 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1;
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y-1, [2, 2, 4, 2][t])
+b(x-1, y+1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Jun 02 2014
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, {2, 2, 4, 2}[[t]]] + b[x-1, y+1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
A384613
Number of rooted ordered trees with n non-root nodes such that all leaf nodes can be k different colors where k is the degree of their parent node.
Original entry on oeis.org
1, 1, 5, 36, 340, 4019, 57696, 982146, 19419042, 438068191, 11106513798, 312555754796, 9663786464541, 325515760762637, 11861723942987878, 464834173383876612, 19490387161582849600, 870582781070074780946, 41266849779858887379029, 2068827708558025551348644
Offset: 0
a(2) = 5 counts:
o o o o o
| / \ / \ / \ / \
o (1) (1) (1) (2) (2) (1) (2) (2)
|
(1)
-
G(k,N) = if(k>N, 1, 1+ sum(i=1,N, (x*(G(k+1,N-i+1)+i-1))^i))
G_x(N) = {my(x='x+O('x^N)); Vec(G(1,N)+ O('x^(N+1)))}
A102406
Number of Dyck paths of semilength n having no ascents of length 1 that start at an even level.
Original entry on oeis.org
1, 0, 1, 2, 5, 14, 39, 114, 339, 1028, 3163, 9852, 31005, 98436, 314901, 1014070, 3284657, 10694314, 34979667, 114887846, 378750951, 1252865288, 4157150327, 13832926200, 46148704121, 154327715592, 517236429545, 1737102081962, 5845077156189, 19702791805126
Offset: 0
a(3) = 2 because we have UUDUDD and UUUDDD, having no ascents of length 1 that start at an even level.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (1+x+x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) )); // G. C. Greubel, Oct 31 2024
-
G:=(1+z+z^2-sqrt(1-2*z-5*z^2-2*z^3+z^4))/2/z/(1+z)^2: Gser:=series(G,z=0,32): 1,seq(coeff(Gser,z^n),n=1..29);
-
CoefficientList[Series[(1+x+x^2 -Sqrt[1-2*x-5*x^2-2*x^3+x^4])/(2*x*(1+x)^2), {x,0,40}], x] (* G. C. Greubel, Oct 31 2024 *)
-
def A102406_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x+x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) ).list()
A102406_list(30) # G. C. Greubel, Oct 31 2024
A356832
Number of permutations p of [n] such that at most one element of {p(1),...,p(i-1)} is between p(i) and p(i+1) for all i < n and n = 0 or p(n) < 3.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 72, 206, 608, 1834, 5636, 17578, 55516, 177192, 570700, 1852572, 6055080, 19910730, 65823752, 218654100, 729459552, 2443051214, 8210993364, 27685671844, 93625082140, 317470233150, 1079183930828, 3676951654520, 12554734605496, 42952566314236
Offset: 0
a(0) = 1: (), the empty permutation.
a(1) = 1: 1.
a(2) = 2: 12, 21.
a(3) = 4: 132, 231, 312, 321.
a(4) = 10: 1342, 1432, 2431, 3142, 3412, 3421, 4132, 4231, 4312, 4321.
a(5) = 26: 13542, 14532, 15342, 15432, 24531, 25431, 31542, 35142, 35412, 35421, 41532, 42531, 45132, 45231, 45312, 45321, 51342, 51432, 52431, 53142, 53412, 53421, 54132, 54231, 54312, 54321.
Column k=0 and also main diagonal of
A356692.
-
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(sort([o-j, u+j-1])[]), j=1..min(2, o))+
add(b(sort([u-j, o+j-1])[]), j=1..min(2, u)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..30);
# second Maple program:
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, add(b(n-1, j), j=k-2..k+1)))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30);
A337991
Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
2, 5, 4, 1;
4, 13, 15, 7, 1;
9, 35, 52, 36, 11, 1;
21, 96, 175, 160, 75, 16, 1;
51, 267, 576, 655, 415, 141, 22, 1;
...
-
B:=Binomial;
A337991:= func< n,k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
[A337991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
-
T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
-
T(n,m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n,i-m)*binomial(n+m-i,i-1)*binomial(n+m-i,m),i,1,n)/n;
-
def A337991(n,k):
b=binomial
if n==0: return 1
else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1,n+1))
# SageMath
flatten([[A337991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024
Showing 1-5 of 5 results.
Comments