A102421 To get a(n), start with 2n+1, multiply by 3 and add 1 and divide out any power of 2; then multiply by 3 and subtract 1 and divide out any power of 2.
1, 7, 1, 1, 5, 25, 7, 17, 19, 43, 1, 13, 7, 61, 1, 35, 37, 79, 5, 11, 23, 97, 25, 53, 55, 115, 7, 31, 1, 133, 17, 71, 73, 151, 19, 5, 41, 169, 43, 89, 91, 187, 1, 49, 25, 205, 13, 107, 109, 223, 7, 29, 59, 241, 61, 125, 127, 259, 1, 67, 17, 277, 35, 143, 145, 295, 37, 19, 77, 313
Offset: 0
Keywords
Examples
n=1, 2n+1 = 3 -> 10 -> 5; 5 -> 14 ->7 = a(1). n=17, 2*n+1 = 35 -> 106 ->53; 53 -> 158 -> 79 = a(17).
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999
Programs
-
Maple
A102421 :=proc(n) local j; j:=3*n+1; while j mod 2 = 0 do j:=j/2; od: j:=3*j-1; while j mod 2 = 0 do j:=j/2; od: j; end proc;
-
Mathematica
nextx[x_Integer] := Block[{ a = x}, a = 3a + 1; While[EvenQ@a, a /= 2]; a = 3a - 1; While[EvenQ@a, a /= 2]; a]; Table[ nextx[2n + 1], {n, 0, 69}] (* Robert G. Wilson v Sep 20 2006 *)
-
PARI
a(n) = {n = 3*n + 2; n>>=valuation(n, 2); n = 3*n - 1; n >> valuation(n, 2)} \\ David A. Corneth, Aug 22 2020
Formula
a(n) = A337349(2*n+1). - R. J. Mathar, Aug 24 2020
Extensions
Moved comments to A337349. - R. J. Mathar, Aug 24 2020
Comments