A102443 a(n)=b(n, A102442(n)), where b(n,0)=n and b(n,k+1)=A102440(b(n,k)).
1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 8, 12, 8, 12, 12, 16, 12, 18, 12, 16, 18, 16, 16, 24, 16, 16, 27, 24, 16, 24, 16, 32, 24, 24, 24, 36, 24, 24, 24, 32, 24, 36, 24, 32, 36, 32, 32, 48, 36, 32, 36, 32, 36, 54, 32, 48, 36, 32, 32, 48, 32, 32, 54, 64, 32, 48, 32, 48, 48, 48, 48, 72, 48
Offset: 1
Examples
See A102442.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
g[p_] := (* greatest semiprime less than prime p *) g[p] = For[k = p - 1, True, k--, If[PrimeOmega[k] == 2, Return[k]]]; A102440[n_] := Product[{p, e} = pe; If[p <= 3, p, g[p]]^e, {pe, FactorInteger[n]}]; A102442[n_] := Length[NestWhileList[A102440, n, FactorInteger[#][[-1, 1]] > 3 & ] - 1]; a[n_] := b[n, A102442[n]]; b[n_, 0] := n; b[n_, k_] := A102440[b[n, k - 1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 16 2021 *)
-
PARI
a(n)={while(1, my(f=factor(n)); if(!#select(t->t>3, f[,1]), return(n), n=prod(i=1, #f~, my(p=f[i,1]); while(p>4 && bigomega(p)<>2, p--); p^f[i,2])))} \\ Andrew Howroyd, Jul 31 2018
Comments