cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102446 a(n) = a(n-1) + 4*a(n-2) for n>1, a(0) = a(1) = 2.

Original entry on oeis.org

2, 2, 10, 18, 58, 130, 362, 882, 2330, 5858, 15178, 38610, 99322, 253762, 651050, 1666098, 4270298, 10934690, 28015882, 71754642, 183818170, 470836738, 1206109418, 3089456370, 7913894042, 20271719522, 51927295690, 133014173778, 340723356538, 872780051650
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from R. K. Guy, Feb 23 2005

Keywords

Comments

The continued fraction expansion c_0 = 0, c_n = 1/2 (n>0) (see a paper by Bremner & Tzanakis) has convergents 2/1, 2/5, 10/9, 18/29, 58/65, 130/181, ... where the numerators and denominators satisfy the recurrence a_n = a_{n-1} + 4a_{n-2}. The denominators are A006131 and the numerators are the present sequence.

Crossrefs

Cf. A006131.

Programs

  • Magma
    [n le 2 select 2 else Self(n-1) + 4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Mathematica
    a[0] = a[1] = 2; a[n_] := a[n] = a[n - 1] + 4a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Feb 23 2005 *)
    LinearRecurrence[{1, 4}, {2, 2}, 30] (* Vincenzo Librandi, Dec 17 2015 *)
  • PARI
    Vec(-2 / (-1+x+4*x^2) + O(x^40)) \\ Colin Barker, Dec 22 2016
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(2,2,1,4, lambda n: 0)
    [next(it) for i in range(29)] # Zerinvary Lajos, Jul 09 2008
    
  • Sage
    def A000129():
        x, y = 0, 1
        while True:
            x, y = (x + y) << 1, x - y
            yield x
    a = A000129(); [next(a) for i in range(28)]  # Peter Luschny, Dec 17 2015
    

Formula

a(n) = 2 * A006131(n).
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 4*x^2 + (2*k+3)*x - x*(2*k+1 + 4*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: -2 / ( -1+x+4*x^2 ). - R. J. Mathar, Feb 10 2016
a(n) = (2^(-n)*(-(1-sqrt(17))^(1+n) + (1+sqrt(17))^(1+n)))/sqrt(17). - Colin Barker, Dec 22 2016

Extensions

More terms from Robert G. Wilson v, Feb 23 2005