A102446 a(n) = a(n-1) + 4*a(n-2) for n>1, a(0) = a(1) = 2.
2, 2, 10, 18, 58, 130, 362, 882, 2330, 5858, 15178, 38610, 99322, 253762, 651050, 1666098, 4270298, 10934690, 28015882, 71754642, 183818170, 470836738, 1206109418, 3089456370, 7913894042, 20271719522, 51927295690, 133014173778, 340723356538, 872780051650
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4).
Crossrefs
Cf. A006131.
Programs
-
Magma
[n le 2 select 2 else Self(n-1) + 4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
-
Mathematica
a[0] = a[1] = 2; a[n_] := a[n] = a[n - 1] + 4a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Feb 23 2005 *) LinearRecurrence[{1, 4}, {2, 2}, 30] (* Vincenzo Librandi, Dec 17 2015 *)
-
PARI
Vec(-2 / (-1+x+4*x^2) + O(x^40)) \\ Colin Barker, Dec 22 2016
-
Sage
from sage.combinat.sloane_functions import recur_gen2b it = recur_gen2b(2,2,1,4, lambda n: 0) [next(it) for i in range(29)] # Zerinvary Lajos, Jul 09 2008
-
Sage
def A000129(): x, y = 0, 1 while True: x, y = (x + y) << 1, x - y yield x a = A000129(); [next(a) for i in range(28)] # Peter Luschny, Dec 17 2015
Formula
a(n) = 2 * A006131(n).
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 4*x^2 + (2*k+3)*x - x*(2*k+1 + 4*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: -2 / ( -1+x+4*x^2 ). - R. J. Mathar, Feb 10 2016
a(n) = (2^(-n)*(-(1-sqrt(17))^(1+n) + (1+sqrt(17))^(1+n)))/sqrt(17). - Colin Barker, Dec 22 2016
Extensions
More terms from Robert G. Wilson v, Feb 23 2005
Comments