cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102462 Max{ k!/(a(1)!*a(2)!*..*a(n)!) : a(1) + 2*a(2) + 3*a(3) + ... + n*a(n) = n, a(1) + a(2) + ... + a(n) = k }.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 12, 20, 30, 60, 105, 168, 280, 504, 840, 1512, 2520, 5040, 9240, 15840, 27720, 55440, 102960, 180180, 360360, 675675, 1201200, 2162160, 4084080, 7351344, 12697776, 24504480, 46558512, 84651840, 155195040, 296281440, 543182640, 961015440
Offset: 0

Views

Author

Vladeta Jovovic, Feb 23 2005

Keywords

Comments

a(n) is the greatest number in row n of A048996 and in row n of A072811. Thus a(n) is the greatest number of compositions (permutations) obtainable from some partition of n. Example: a(7)=12 is the greatest number of compositions from some partition of 7, specifically, the partition {3,2,1,1}. - Clark Kimberling, Dec 24 2006
The partition(s) giving this optimum is always one where #{parts equal to i} >= #{parts equal to j} if i <= j. These partitions are counted in A007294. - Franklin T. Adams-Watters, Apr 08 2008
The number of partition(s) giving this optimum is given by A198254. - Olivier Gérard, Nov 17 2011

Crossrefs

Programs

  • Maple
    b:= proc(n,i,p) option remember; `if`(n=0 or i=1, (p+n)!/n!,
           max(seq(b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 15 2015
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p + n)!/n!, Max[Table[ b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)