cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100846 Concatenate (1,n,n,1).

Original entry on oeis.org

1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 110101, 111111, 112121, 113131, 114141, 115151, 116161, 117171, 118181, 119191, 120201, 121211, 122221, 123231, 124241, 125251, 126261, 127271, 128281, 129291, 130301, 131311, 132321
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 07 2005

Keywords

Examples

			For n = 0, concatenate(1,n,n,1) is 1001 = a(0).
For n = 5, concatenate(1,n,n,1) is 1551 = a(5).
For n = 10, concatenate(1,n,n,1) is 110101 = a(10).
		

Crossrefs

Cf. A100896 (3nn3), 7nn7 (A100897), 9nn9 (A102484).
For primes in these sequences: A102496, A102497 (1nn1); A102498, A102499 (3nn3); A102500, A102501 (7nn7); A102502, A102503 (9nn9); A102504 (intersection).

Programs

  • Maple
    seq(seq((10^(2*d+1)+1+(10^(d+1)+10)*n), n=`if`(d>1,10^(d-1),0) .. 10^d-1),d=1..3);
    # Robert Israel, Dec 30 2015, edited for n=0 by M. F. Hasler, Jun 25 2018
  • Mathematica
    For[n = 0, n < 30, n++, l := Floor[Log[10, Min[n,1]] + 1]; gvout := (n*10^l + n)*10 + 1; m := Floor[Log[10, gvout]]; giveout := 10^(m + 1) + out; Print[giveout]] (* Stefan Steinerberger, Jan 27 2006, edited for n=0 by M. F. Hasler, Jun 25 2018 *)
  • PARI
    A100846(n)=eval(Str(1,n,n,1)) \\ M. F. Hasler, Jun 22 2018

Formula

G.f.: 1001 + x*(31-11*x)/(1-x)^2 + Sum_{k>=0} 90*(12*10^(2*k)*(1-x)+10^k*x)*x^(10^k)/(1-x)^2. - Robert Israel, Dec 30 2015

Extensions

More terms from Stefan Steinerberger, Jan 27 2006
Definition reworded and missing 1001 added by M. F. Hasler, Jun 22 2018

A102502 Values of n for which the concatenation 9nn9 (from sequence A102484) are primes.

Original entry on oeis.org

10, 13, 16, 17, 20, 23, 28, 31, 35, 37, 46, 53, 56, 61, 65, 68, 74, 82, 94, 95, 98, 1010, 1013, 1018, 1042, 1048, 1051, 1052, 1063, 1072, 1073, 1082, 1103, 1114, 1124, 1129, 1139, 1142, 1171, 1192, 1193, 1195, 1208, 1214, 1240, 1241, 1244, 1249, 1258, 1271
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 13 2005

Keywords

Examples

			The number 910109 is prime and corresponds to n=10.
The number 9101310139 is prime and corresponds to n=1013.
		

Crossrefs

The full sequence of integers of the form 9nn9 is A102484. The primes that correspond to these values of n are sequence A102503.

Programs

  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits[n]}, PrimeQ[ FromDigits[ Join[{9}, id, id, {9}]]]]; Select[ Range[1288], fQ[ # ] &] (* Robert G. Wilson v, Jan 14 2004 *)

Extensions

More terms from Robert G. Wilson v, Jan 14 2005

A102504 Values of n for which the concatenations 1nn1, 3nn3, 7nn7 and 9nn9 are all primes.

Original entry on oeis.org

2092, 2131, 2797, 3433, 4126, 5524, 5710, 6817, 8383, 8815, 9472, 114613, 116329, 130213, 206776, 239389, 282298, 286642, 306046, 307180, 311317, 318310, 341386, 360733, 366529, 377005, 425665, 430597, 460441, 475642, 475660, 478078, 490870
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 13 2005

Keywords

Examples

			E.g. n=2092 leads to 1209220921, 3209220923, 7209220927 and 9209220929, all of which are primes.
		

Crossrefs

For full sequences of integers of form 1nn1 (A100846), 3nn3 (A100896), 7nn7 (A100897), 9nn9 (A102484). For primes in these sequences: 1nn1 (A102496, A102497), 3nn3 (A102498, A102499), 7nn7 (A102500, A102501), 9nn9 (A102502, A102503).

Programs

  • Mathematica
    foQ[n_, o_] := Block[{id = IntegerDigits[n]}, PrimeQ[ FromDigits[ Join[{o}, id, id, {o}] ]]]; Select[ Range[500985], foQ[ #, 1] && foQ[ #, 3] && foQ[ #, 7] && foQ[ #, 9] &] (* Robert G. Wilson v, Jan 14 2005 *)
Showing 1-3 of 3 results.