A102573 Triangle of coefficients of polynomials in Sum_{k=0..n} binomial(n,k) * k^r.
1, 1, 3, 1, 5, -2, 1, 10, 15, -10, 1, 14, 31, -46, 16, 1, 21, 105, 35, -210, 112, 1, 27, 183, 97, -832, 860, -272, 1, 36, 378, 1008, -1575, -2436, 5292, -2448, 1, 44, 586, 2144, -3719, -10876, 31036, -26896, 7936, 1, 55, 990, 6270, 3465, -51513, 27720, 135300, -208560
Offset: 2
Examples
Triangle begins: 1; 1, 3; 1, 5, -2; 1, 10, 15, -10; 1, 14, 31, -46, 16; ... E.g. Sum_{k=0..n} binomial(n,k) * k^4 = 2^(n-4) * n * (n+1) * (n^2 + 5*n - 2).
References
- E. Kilic, Y. T. Ulutas and N. Omur, Formulas for weighted binomial sums using the powers of terms of binary recurrences, Miskolc Mathematical Notes, Vol. 13 (2012), No. 1, pp. 53-65. - From N. J. A. Sloane, Dec 16 2012
Links
- Eric Weisstein's World of Mathematics, Binomial Sums
Crossrefs
Cf. A209849.
Comments