A102574 a(n) is the sum of the distinct norms of the divisors of n over the Gaussian integers.
1, 7, 10, 31, 31, 70, 50, 127, 91, 217, 122, 310, 183, 350, 310, 511, 307, 637, 362, 961, 500, 854, 530, 1270, 781, 1281, 820, 1550, 871, 2170, 962, 2047, 1220, 2149, 1550, 2821, 1407, 2534, 1830, 3937, 1723, 3500, 1850, 3782, 2821, 3710, 2210, 5110, 2451
Offset: 1
Examples
Let ||i|| denote the norm of i. a(2) = 1 + ||1+i|| + 2^2 = 1 + 2 + 4 = 7. a(5) = 1 + ||1+2i|| + 5^2 = 1 + 5 + 25 = 31. Note that ||1+2i|| = ||2+i|| so their norm (5) is only counted once.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Andrew Howroyd)
- Wikipedia, Gaussian integer.
Programs
-
Mathematica
b[n_] := Product[{p, e} = pe; If[Mod[p, 4] == 3, p^e, 1], {pe, FactorInteger[n]}]; a[n_] := With[{r = b[n]}, DivisorSigma[2, r] DivisorSigma[1, (n/r)^2]]; a /@ Range[50] (* Jean-François Alcover, Sep 20 2019, from PARI *)
-
PARI
\\ here b(n) is A097706. b(n)={my(f=factor(n)); my(r=prod(i=1, #f~, my([p,e]=f[i,]); if(p%4==3, p^e, 1))); r} a(n)={my(r=b(n)); sigma(r,2)*sigma((n/r)^2)} \\ Andrew Howroyd, Aug 03 2018
-
Python
from math import prod from sympy import factorint def A102574(n): return prod((q := int(p & 3 == 3))*(p**(2*(e+1))-1)//(p**2-1) + (1-q)*(p**(2*e+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jun 28 2022
Formula
Multiplicative with a(p^e) = sigma(p^(2e)) = (p^(2e+1) - 1)/(p - 1) if p = 2 or p == 1 (mod 4); sigma_2(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 3 (mod 4). - Jianing Song, Aug 03 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (5/12) * zeta(3) * A243380 = 0.52812367275583317729... . - Amiram Eldar, Feb 13 2024
Extensions
Corrected and extended by David Wasserman, Apr 08 2008
Keyword:mult added by Andrew Howroyd, Aug 03 2018
Name clarified by Jianing Song, Aug 03 2018
Comments