cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371100 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3, n,k >= 1.

Original entry on oeis.org

21, 21, 45, 341, 117, 69, 341, 725, 213, 93, 5461, 1877, 1109, 309, 117, 5461, 11605, 3413, 1493, 405, 141, 87381, 30037, 17749, 4949, 1877, 501, 165, 87381, 185685, 54613, 23893, 6485, 2261, 597, 189, 1398101, 480597, 283989, 79189, 30037, 8021, 2645, 693, 213, 1398101, 2970965, 873813, 382293, 103765, 36181, 9557, 3029, 789, 237
Offset: 1

Views

Author

Antti Karttunen and Ali Sada, Apr 18 2024

Keywords

Examples

			The top left corner of the array:
n\k|      1       2       3        4        5        6        7        8
---+--------------------------------------------------------------------------
1  |     21,     45,     69,      93,     117,     141,     165,     189, ...
2  |     21,    117,    213,     309,     405,     501,     597,     693, ...
3  |    341,    725,   1109,    1493,    1877,    2261,    2645,    3029, ...
4  |    341,   1877,   3413,    4949,    6485,    8021,    9557,   11093, ...
5  |   5461,  11605,  17749,   23893,   30037,   36181,   42325,   48469, ...
6  |   5461,  30037,  54613,   79189,  103765,  128341,  152917,  177493, ...
7  |  87381, 185685, 283989,  382293,  480597,  578901,  677205,  775509, ...
8  |  87381, 480597, 873813, 1267029, 1660245, 2053461, 2446677, 2839893, ...
...
		

Crossrefs

Cf. A372351 (same terms, in different order), A372290 (sorted into ascending order, without duplicates), A372293 (odd numbers that do not occur here).
Leftmost column is A144864 duplicated, without its initial 1.
Row 1: A102603.

Programs

  • Mathematica
    A371100[n_, k_] := 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    Table[A371100[n - k + 1, k], {n, 10}, {k, n}] (* Paolo Xausa, Apr 21 2024 *)
  • PARI
    up_to = 55;
    A371100sq(n,k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    A371100list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371100sq((a-(col-1)),col))); (v); };
    v371100 = A371100list(up_to);
    A371100(n) = v371100[n];

Formula

A(n, k) = A007283(n)*A257852(n,k) + A079319(n).
A(n, k) = A371094(A257852(n,k)).
A(n+2, k) = 5 + 16*A(n,k).

A371102 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(1, k) = 4*k-1, and A(n+1, k) = A371094(A(n, k)), n,k >= 1.

Original entry on oeis.org

3, 21, 7, 5461, 45, 11, 357913941, 1109, 69, 15, 1537228672809129301, 873813, 3413, 93, 19, 28356863910078205288614550619314017621, 1466015503701, 22369621, 2261, 117, 23, 9649340769776349618630915417390658987772498722136713669954798667326094136661, 25790417485112089060398421, 6004799503160661, 873813, 11605, 141, 27
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2024

Keywords

Examples

			Array begins:
n\k|         1       2         3       4         5         6         7
---+--------------------------------------------------------------------
1  |         3,      7,       11,     15,       19,       23,       27,
2  |        21,     45,       69,     93,      117,      141,      165,
3  |      5461,   1109,     3413,   2261,    11605,     3413,     8021,
4  | 357913941, 873813, 22369621, 873813, 72701269, 22369621, 12408149,
		

Crossrefs

Cf. A004767 (row 1), A102603 (row 2), A371094.
Cf. also arrays A257852, A371096, A371100, A371103.

Programs

  • PARI
    up_to = 105;
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A371102sq(n,k) = if(1==n,4*k-1,A371094(A371102sq(n-1,k)));
    A371102list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371102sq((a-(col-1)),col))); (v); };
    v371102 = A371102list(up_to);
    A371102(n) = v371102[n];

A372290 Numbers that occur in the odd bisection of A371094.

Original entry on oeis.org

21, 45, 69, 93, 117, 141, 165, 189, 213, 237, 261, 285, 309, 333, 341, 357, 381, 405, 429, 453, 477, 501, 525, 549, 573, 597, 621, 645, 669, 693, 717, 725, 741, 765, 789, 813, 837, 861, 885, 909, 933, 957, 981, 1005, 1029, 1053, 1077, 1101, 1109, 1125, 1149, 1173, 1197, 1221, 1245, 1269, 1293, 1317, 1341, 1365, 1389
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2024

Keywords

Comments

Numbers that occur in array A371100.

Examples

			21 is present because A371094(1) = A371094(3) = 21.
45 is present because A371094(7) = 45.
87381 is present because A371094(85) = A371094(213) = A371094(7281) = A371094(14563) = 87381.
		

Crossrefs

Union of A372291 and A372292.
Cf. A102603 (subsequence), A371094, A371100.

Programs

  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    isA372290(n) = if(!(n%2),0,forstep(k=1,n,2,if(A371094(k)==n,return(1))); (0));
    
  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372290list(up_to_n) = { my(v=vector((1+up_to_n)/2), x, lista=List([])); forstep(k=1,up_to_n,2,x=A371094(k); if(x <= up_to_n, v[(x+1)/2]++)); for(i=1,(1+up_to_n)/2,if(v[i]>0, listput(lista,i+i-1))); Vec(lista); };
Showing 1-3 of 3 results.