A371094
a(n) = m*(2^e) + ((4^e)-1)/3, where m = 3n+1, and e is the 2-adic valuation of m.
Original entry on oeis.org
1, 21, 7, 21, 13, 341, 19, 45, 25, 117, 31, 69, 37, 341, 43, 93, 49, 213, 55, 117, 61, 5461, 67, 141, 73, 309, 79, 165, 85, 725, 91, 189, 97, 405, 103, 213, 109, 1877, 115, 237, 121, 501, 127, 261, 133, 1109, 139, 285, 145, 597, 151, 309, 157, 5461, 163, 333, 169, 693, 175, 357, 181, 1493, 187, 381, 193, 789, 199
Offset: 0
For n=1, 3*n+1 = 4, "100" in binary, when we substitute 01's for the two trailing 0's, we obtain 21, "10101" in binary, therefore a(1) = 21.
For n=6, 3*6+1 = 19, "10011" in binary, and there are no trailing 0's, and no changes, therefore a(6) = 19.
For n=7, 3*7+1 = 22, "10110" in binary, with one trailing 0, which when replaced with 01 gives us 45, "101101" in binary, therefore a(7) = 45.
For n=229, there are e=4 trailing bit expansions 0 -> 01,
3n+1 = binary 101011 0 0 0 0
a(n) = binary 101011 01010101
-
Array[#2*(2^#3) + ((4^#3) - 1)/3 & @@ {#1, #2, IntegerExponent[#2, 2]} & @@ {#, 3 #1 + 1} &, 67, 0] (* Michael De Vlieger, Apr 19 2024 *)
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
-
def A371094(n): return ((m:=3*n+1)<<(e:=(~m & m-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 28 2024
A371100
Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3, n,k >= 1.
Original entry on oeis.org
21, 21, 45, 341, 117, 69, 341, 725, 213, 93, 5461, 1877, 1109, 309, 117, 5461, 11605, 3413, 1493, 405, 141, 87381, 30037, 17749, 4949, 1877, 501, 165, 87381, 185685, 54613, 23893, 6485, 2261, 597, 189, 1398101, 480597, 283989, 79189, 30037, 8021, 2645, 693, 213, 1398101, 2970965, 873813, 382293, 103765, 36181, 9557, 3029, 789, 237
Offset: 1
The top left corner of the array:
n\k| 1 2 3 4 5 6 7 8
---+--------------------------------------------------------------------------
1 | 21, 45, 69, 93, 117, 141, 165, 189, ...
2 | 21, 117, 213, 309, 405, 501, 597, 693, ...
3 | 341, 725, 1109, 1493, 1877, 2261, 2645, 3029, ...
4 | 341, 1877, 3413, 4949, 6485, 8021, 9557, 11093, ...
5 | 5461, 11605, 17749, 23893, 30037, 36181, 42325, 48469, ...
6 | 5461, 30037, 54613, 79189, 103765, 128341, 152917, 177493, ...
7 | 87381, 185685, 283989, 382293, 480597, 578901, 677205, 775509, ...
8 | 87381, 480597, 873813, 1267029, 1660245, 2053461, 2446677, 2839893, ...
...
Cf.
A372351 (same terms, in different order),
A372290 (sorted into ascending order, without duplicates),
A372293 (odd numbers that do not occur here).
Leftmost column is
A144864 duplicated, without its initial 1.
-
A371100[n_, k_] := 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
Table[A371100[n - k + 1, k], {n, 10}, {k, n}] (* Paolo Xausa, Apr 21 2024 *)
-
up_to = 55;
A371100sq(n,k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
A371100list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371100sq((a-(col-1)),col))); (v); };
v371100 = A371100list(up_to);
A371100(n) = v371100[n];
Original entry on oeis.org
21, 21, 341, 45, 117, 69, 341, 93, 213, 117, 5461, 141, 309, 165, 725, 189, 405, 213, 1877, 237, 501, 261, 1109, 285, 597, 309, 5461, 333, 693, 357, 1493, 381, 789, 405, 3413, 429, 885, 453, 1877, 477, 981, 501, 87381, 525, 1077, 549, 2261, 573, 1173, 597, 4949, 621, 1269, 645, 2645, 669, 1365, 693, 11605, 717
Offset: 1
Cf.
A371094, and array
A371100 (gives the same terms, in different order).
Cf.
A372290 (the range of this sequence),
A372291 (numbers that occur only once),
A372292 (more than once),
A372293 (odd numbers not occurring here).
-
Table[With[{e = IntegerExponent[6*n - 2, 2]}, (6*n - 2)*2^e + (4^e - 1)/3], {n, 100}] (* Paolo Xausa, Apr 29 2024 *)
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
A372351(n) = A371094(n+n-1);
-
def A372351(n): return ((m:=6*n-2)<<(e:=(~m & m-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 28 2024
A372291
Numbers that occur exactly once in the odd bisection of A371094.
Original entry on oeis.org
45, 69, 93, 141, 165, 189, 237, 261, 285, 333, 357, 381, 429, 453, 477, 525, 549, 573, 621, 645, 669, 717, 725, 741, 765, 813, 837, 861, 909, 933, 957, 1005, 1029, 1053, 1101, 1109, 1125, 1149, 1197, 1221, 1245, 1293, 1317, 1341, 1389, 1413, 1437, 1485, 1493, 1509, 1533, 1581, 1605, 1629, 1677, 1701, 1725, 1773, 1797
Offset: 1
45 is present because A371094(k) = 45 for no other odd number than k=7.
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
isA372291(n) = if(!(n%2),0,my(c=0); forstep(k=1,n,2,if(A371094(k)==n,c++;if(c>1,return(0)))); (c));
A372292
Numbers that occur more than once in the odd bisection of A371094.
Original entry on oeis.org
21, 117, 213, 309, 341, 405, 501, 597, 693, 789, 885, 981, 1077, 1173, 1269, 1365, 1461, 1557, 1653, 1749, 1845, 1877, 1941, 2037, 2133, 2229, 2325, 2421, 2517, 2613, 2709, 2805, 2901, 2997, 3093, 3189, 3285, 3381, 3413, 3477, 3573, 3669, 3765, 3861, 3957, 4053, 4149, 4245, 4341, 4437, 4533, 4629, 4725, 4821, 4917
Offset: 1
21 is present because A371094(1) = A371094(3) = 21.
87381 is present because A371094(85) = A371094(213) = A371094(7281) = A371094(14563) = 87381.
185685 is present because A371094(469) = A371094(15473) = A371094(30947) = 185685.
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
isA372292(n) = if(!(n%2),0,my(c=0); forstep(k=1,n,2,if(A371094(k)==n,c++)); (c>1));
-
search_up_to = 1398101;
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
A372292list(up_to_n) = { my(v=vector((1+up_to_n)/2), x, lista=List([])); forstep(k=1,up_to_n,2,x=A371094(k); if(x <= up_to_n, v[(x+1)/2]++)); for(i=1,(1+up_to_n)/2,if(v[i]>1, listput(lista,i+i-1))); Vec(lista); };
v372292 = A372292list(search_up_to);
A372292(n) = v372292[n];
A372293
Odd numbers that do not occur in the odd bisection of A371094.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157
Offset: 1
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
isA372293(n) = if(!(n%2),0,forstep(k=1,n,2,if(A371094(k)==n,return(0))); (1));
Showing 1-6 of 6 results.
Comments