cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102623 Number of compositions into a prime number of distinct parts.

Original entry on oeis.org

0, 0, 2, 2, 4, 10, 12, 18, 26, 32, 40, 52, 60, 72, 206, 218, 352, 490, 744, 1002, 1382, 1760, 2380, 3004, 3864, 4728, 5954, 12218, 13804, 20554, 27660, 39930, 52682, 75632, 99184, 132940, 172332, 227088, 287606, 373562, 465280, 587602, 725880, 899802, 1094846
Offset: 1

Views

Author

Vladeta Jovovic, Jan 31 2005

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1],
          `if`(n>i*(i+1)/2, [], zip((x, y)->x+y, b(n, i-1),
          `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    a:= proc(n) local l; l:= b(n$2);
          add(`if`(isprime(i), l[i+1]*i!, 0), i=2..nops(l)-1)
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Nov 20 2012
  • Mathematica
    CoefficientList[ Series[ Sum[ Prime[k]!* x^(Prime[k]^2/2 + Prime[k]/2)/Product[1 - x^j, {j, Prime[k]}], {k, 44}], {x, 0, 44}], x] (* Robert G. Wilson v, Feb 04 2005 *)

Formula

G.f.: Sum(prime(k)!*x^(1/2*prime(k)^2+1/2*prime(k))/Product(1-x^j, j = 1 .. prime(k)), k = 1 .. infinity).

Extensions

More terms from Robert G. Wilson v, Feb 04 2005