A102623 Number of compositions into a prime number of distinct parts.
0, 0, 2, 2, 4, 10, 12, 18, 26, 32, 40, 52, 60, 72, 206, 218, 352, 490, 744, 1002, 1382, 1760, 2380, 3004, 3864, 4728, 5954, 12218, 13804, 20554, 27660, 39930, 52682, 75632, 99184, 132940, 172332, 227088, 287606, 373562, 465280, 587602, 725880, 899802, 1094846
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1], `if`(n>i*(i+1)/2, [], zip((x, y)->x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end: a:= proc(n) local l; l:= b(n$2); add(`if`(isprime(i), l[i+1]*i!, 0), i=2..nops(l)-1) end: seq(a(n), n=1..50); # Alois P. Heinz, Nov 20 2012
-
Mathematica
CoefficientList[ Series[ Sum[ Prime[k]!* x^(Prime[k]^2/2 + Prime[k]/2)/Product[1 - x^j, {j, Prime[k]}], {k, 44}], {x, 0, 44}], x] (* Robert G. Wilson v, Feb 04 2005 *)
Formula
G.f.: Sum(prime(k)!*x^(1/2*prime(k)^2+1/2*prime(k))/Product(1-x^j, j = 1 .. prime(k)), k = 1 .. infinity).
Extensions
More terms from Robert G. Wilson v, Feb 04 2005