cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102639 Combinatorial triangle !n. This table read by rows gives the coefficients of general sum formulas of n-th left factorials (A003422). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k and k=1 to n-2, where T(i,k) satisfies !n = n + Sum_{k=1..n-2} Sum_{i=1..2*k} T(i,k) * C(n-k-1,i).

Original entry on oeis.org

1, 1, 3, 8, 8, 3, 9, 46, 101, 114, 65, 15, 33, 272, 975, 1935, 2289, 1615, 630, 105, 153, 1796, 9175, 26795, 49474, 60080, 48104, 24535, 7245, 945, 873, 13424, 90255, 353507, 902164, 1582455, 1953272, 1700860, 1025927, 408870, 97020, 10395, 5913
Offset: 1

Views

Author

Keywords

Comments

The coefficients T(i,k) along the i-th columns of the triangle are the consecutive partial sums of those found in table A094216.

Examples

			!7 = 7 + 1*C(7-2,1) + 1*C(7-2,2) + 3*C(7-3,1) + ... + 33*C(7-5,1) + 272*C(7-5,2) + 153*C(7-6,1) = 7 + 5 + 10 + 12 + 8*C(4,2) + 8*C(4,3) + 3*C(4,4) + 9*C(3,1) + 46*C(3,2) + 101*C(3,3) + 66 + 272 + 153 = 7 + 5 + 10 + 12 + 48 + 32 + 3 + 27 + 138 + 101 + 66 + 272 + 153 = 874.
		

Crossrefs