A102716 Triangle read by rows: T(n,k) = sigma(binomial(n,k)) (0 <= k <= n), where sigma(m) is the sum of the positive divisors of m.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 12, 7, 1, 1, 6, 18, 18, 6, 1, 1, 12, 24, 42, 24, 12, 1, 1, 8, 32, 48, 48, 32, 8, 1, 1, 15, 56, 120, 144, 120, 56, 15, 1, 1, 13, 91, 224, 312, 312, 224, 91, 13, 1, 1, 18, 78, 360, 576, 728, 576, 360, 78, 18, 1, 1, 12, 72, 288, 864, 1152, 1152, 864
Offset: 0
Examples
T(6,3)=42 because the sum of the divisors of binomial(6,3)=20 is 1+2+4+5+10+20=42. Triangle begins: 1; 1, 1; 1, 3, 1; 1, 4, 4, 1; 1, 7, 12, 7, 1;
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
Programs
-
Maple
with(numtheory): T:=(n,k)->sigma(binomial(n,k)): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Table[DivisorSigma[1,Binomial[n,k]],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 25 2016 *)
Formula
T(n, k) = sigma(binomial(n, k)) (0 <= k <= n).
Comments