cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102742 Elite primes: a prime number p is called elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic residues mod p.

Original entry on oeis.org

3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, 1295536619521, 1825696645121, 2061584302081
Offset: 1

Views

Author

Tom Mueller, Feb 08 2005; extended Jun 16 2005

Keywords

Comments

Křížek, Luca, Shparlinski, & Somer show that a(n) >> n log^2 n. - Charles R Greathouse IV, Jan 25 2017
Let d = 2^r*d' be the multiplicative order of 2 modulo p. Note that 2^2^s == 2^d == 1 (mod p), so p divides none of.

Crossrefs

Cf. A128852, A344785. Subsequence of A129802.

Programs

  • PARI
    list_upto(N)={forprime(p=3,N,r=2^valuation(p-1,2); a=Mod(3,p); v=List(); k=0; while(1,listput(v,a); a=(a-1)^2+1; for(j=1,#v,if(v[j]==a,k=j;break(2)))); for(i=k,#v,znorder(v[i]) % r != 0 && next(2)); print1(p,", "))} \\ Slow, only for illustration, Jeppe Stig Nielsen, Jan 28 2020
    
  • PARI
    isElite(n) = if(isprime(n) && n > 2, my(d = znorder(Mod(2,n)), StartPoint = valuation(d,2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(issquare(Mod(2,n)^2^i + 1), return(0))); 1, 0) \\ Jianing Song, May 15 2024

Formula

Sum_{n>=1} 1/a(n) = A344785. - Amiram Eldar, May 30 2021

Extensions

a(17) from Tom Mueller, Jul 20 2005
a(18)-a(21) from Tom Mueller, Apr 18 2006
6 further terms from Tom Mueller, Apr 16 2007