cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005754 Number of planted identity matched trees with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 24, 95, 388, 1650, 7183, 31965, 144502, 662241, 3068942, 14358678, 67729973, 321759461, 1538076291, 7392775328, 35707198905, 173221206284, 843634142771, 4123376617009, 20218897206392, 99436453714990, 490355165178472, 2424146632435852
Offset: 1

Views

Author

Keywords

Comments

Number of rooted identity trees with n nodes and edges not attached to root are 2-colored or oriented. - Christian G. Bower, Dec 15 1999

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := g[n-1, n-1]; Table[a[n], {n, 1, 30}] // FullSimplify (* Jean-François Alcover, Dec 02 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(n+1) is Weigh transform of A005753. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.05927840588836202377824646... . - Vaclav Kotesovec, Aug 25 2014
G.f. A(x) satisfies: A(x) = x * exp( A(x)^2/x - A(x^2)^2/(2*x^2) + A(x^3)^2/(3*x^3) - A(x^4)^2/(4*x^4) + ... ). - Ilya Gutkovskiy, May 26 2023

Extensions

More terms from Christian G. Bower, Dec 15 1999

A246312 Decimal expansion of a constant related to identity matched trees.

Original entry on oeis.org

5, 2, 4, 9, 0, 3, 2, 4, 9, 1, 2, 2, 8, 1, 7, 0, 5, 7, 9, 1, 6, 4, 9, 5, 2, 2, 1, 6, 1, 8, 4, 3, 0, 9, 2, 6, 5, 3, 4, 3, 0, 8, 6, 3, 3, 7, 6, 4, 8, 7, 3, 6, 5, 0, 3, 2, 0, 2, 2, 3, 3, 1, 8, 6, 0, 5, 9, 5, 8, 5, 5, 6, 5, 2, 6, 4, 0, 2, 8, 7, 7, 5, 8, 7, 0, 4, 5, 7, 4, 4, 0, 9, 9, 4, 5, 1, 8, 6, 5, 4, 7, 3, 8, 7, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 25 2014

Keywords

Examples

			5.249032491228170579164952216184309265343086337648736503202233186059585565...
		

Crossrefs

Formula

Equals lim n -> infinity A005753(n)^(1/n).
Equals lim n -> infinity A005754(n)^(1/n).
Equals lim n -> infinity A005755(n)^(1/n).
Equals lim n -> infinity A102755(n)^(1/n).
Equals lim n -> infinity A038078(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Sep 06 2014, Feb 24 2015 and Dec 26 2020

A005755 Number of identity matched trees with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 64, 252, 1018, 4182, 17510, 74510, 322034, 1410362, 6251114, 27998532, 126583634, 577079333, 2650573354, 12256481666, 57021299394, 266754944481, 1254245360430, 5924659521632, 28105641930102, 133853504339029, 639801068848128
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): b2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(b2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: c2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(c2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: a2:= n-> (b2(n) -add(b2(m) *b2(n-m), m=1..n-1) -`if`(irem(n, 2)=0, b2(n/2), c2((n+1)/2)))/2: seq(a2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
  • Mathematica
    b2[n_] := b2[n] = If [n == 1, 1, 2/(n-1)*Sum[b2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; c2[n_] := c2[n] = If [n == 1, 1, 1/(n-1)*Sum[c2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; a2[n_] := (b2[n] - Sum[b2[m]*b2[n-m], {m, 1, n-1}] - If[Mod[n, 2] == 0, b2[n/2], c2[(n+1)/2]])/2; Table[a2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.089035519570392123219315... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Aug 04 2009
Showing 1-3 of 3 results.