A102761 Same as A000179, except that a(0) = 2.
2, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
Links
- Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Λ_n^3 and Λ_n(α,β,γ), arXiv:1104.4051 [math.CO], 2011.
Crossrefs
Programs
-
PARI
{ A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ Max Alekseyev, Mar 06 2018
Formula
a(n) = A335391(0,n) (Touchard). - William P. Orrick, Aug 29 2020
Extensions
Changed a(0)=2 (making the sequence more consistent with existing formulae) by Max Alekseyev, Mar 06 2018
Comments