A102769 Decimal expansion of the volume of a dodecahedron with each edge of unit length.
7, 6, 6, 3, 1, 1, 8, 9, 6, 0, 6, 2, 4, 6, 3, 1, 9, 6, 8, 7, 1, 6, 0, 5, 3, 9, 2, 0, 2, 7, 9, 7, 3, 3, 4, 1, 2, 0, 2, 1, 0, 8, 2, 1, 2, 9, 3, 2, 0, 1, 7, 0, 0, 1, 7, 4, 7, 4, 0, 7, 0, 1, 7, 9, 4, 6, 8, 4, 1, 1, 6, 1, 9, 8, 6, 6, 1, 5, 8, 5, 7, 3, 9, 7, 5, 2, 2, 5, 2, 1, 4, 6, 6, 2, 8, 6, 8, 9, 8, 1
Offset: 1
Examples
7.663118960624631968716053920...
References
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 451.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Dodecahedron.
- Wikipedia, Platonic solid.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Maple
evalf((15+7*sqrt(5))/4,100); # Wesley Ivan Hurt, Jan 29 2017
-
Mathematica
RealDigits[(Sqrt[5]/2)*(GoldenRatio)^4, 10, 50][[1]] (* G. C. Greubel, Jul 06 2017 *)
-
PARI
(7*sqrt(5)+15)/4 \\ Charles R Greathouse IV, Apr 25 2016
Formula
Equals (15 + 7 sqrt(5)) / 4.
Equals (sqrt(5)/2)*(phi)^4, where phi is the golden ratio. - G. C. Greubel, Jul 06 2017
Comments