A102848 Number of partitions of n into Fibonacci number of integer parts.
1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 23, 29, 37, 47, 59, 74, 92, 114, 141, 173, 213, 261, 318, 387, 470, 569, 687, 827, 994, 1192, 1426, 1702, 2028, 2412, 2863, 3392, 4012, 4738, 5585, 6574, 7726, 9067, 10624, 12433, 14528, 16957, 19763, 23007, 26749, 31067, 36034
Offset: 0
Examples
a(5) = 6 since out of 7 possible partitions of 5 into integer parts, only 6 include a Fibonacci number of parts: (5), (4,1), (3,2), (3,1,1), (2,2,1), (1,1,1,1,1). The 7th integer partitions of 5 (2,1,1,1) is not counted since it includes 4 integer parts and 4 is not a Fibonacci number.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, `if`((h-> issqr(h+4) or issqr(h-4))(5*(t+n)^2), 1, 0), b(n, i-1, t) + b(n-i, min(i, n-i), t+1)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Jul 29 2017
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, If[IntegerQ @ Sqrt[# + 4] || IntegerQ @ Sqrt[# - 4]&[5*(t + n)^2], 1, 0], b[n, i - 1, t] + b[n - i, Min[i, n - i], t + 1]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *)
Formula
G.f.: 1 + Sum_{n>=2} x^Fibonacci(n)/Product_{i=1..Fibonacci(n)} (1-x^i). - Vladeta Jovovic, Mar 02 2005
Extensions
More terms from Vladeta Jovovic, Mar 02 2005
a(0)=1 prepended by Alois P. Heinz, Jul 29 2017
Comments