A102859 Numbers that when squared and written backwards give a square again.
0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 26, 30, 31, 33, 99, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 130, 200, 201, 202, 210, 211, 212, 220, 221, 260, 264, 300, 301, 307, 310, 311, 330, 836, 990, 1000, 1001, 1002, 1003, 1010, 1011, 1012, 1013, 1020
Offset: 1
Examples
a(7)=12 belongs to the sequence since writing 12^2 = 144 backwards gives 441 = 21^2.
Links
Programs
-
Magma
[n: n in [0..1100] | IsSquare(Seqint(Reverse(Intseq(n^2))))]; // Vincenzo Librandi, Sep 21 2015
-
Maple
rev:= proc(n) local L, Ln, i; L:= convert(n, base, 10); Ln:= nops(L); add(L[i]*10^(Ln-i), i=1..Ln); end proc: select(t -> issqr(rev(t^2)),[$0..10^5]); # Robert Israel, Sep 20 2015
-
Mathematica
Select[Range[1000], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[ #^2]]]]] &]
-
Python
from itertools import count, islice from sympy import integer_nthroot def A102859_gen(startvalue=0): # generator of terms >= startvalue return filter(lambda n:integer_nthroot(int(str(n**2)[::-1]),2)[1], count(max(startvalue,0))) A102859_list = list(islice(A102859_gen(),30)) # Chai Wah Wu, Nov 18 2022
Formula
a(n) = sqrt(A061457(n)). - Jon E. Schoenfield, May 17 2022
Extensions
0 inserted by Jon E. Schoenfield, Sep 20 2015
Comments