cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104379 a(n) = square root of digital reversal of A102859(n)^2.

Original entry on oeis.org

0, 1, 2, 3, 1, 11, 21, 31, 2, 12, 22, 26, 3, 13, 99, 33, 1, 101, 201, 301, 11, 111, 211, 311, 21, 121, 221, 31, 2, 102, 202, 12, 112, 212, 22, 122, 26, 264, 3, 103, 307, 13, 113, 99, 836, 33, 1, 1001, 2001, 3001, 101, 1101, 2101, 3101, 201, 1201, 2201, 301, 1301, 11, 1011
Offset: 1

Views

Author

Zak Seidov, Mar 03 2005

Keywords

Comments

The sequence is inverse to A102859.

Crossrefs

Cf. A102859.

Programs

  • Mathematica
    r[n_] := FromDigits@ Reverse@ IntegerDigits@ n; Sqrt@ r[#^2] & /@ Select[Range[0, 1101], IntegerQ@ Sqrt@ r[#^2] &] (* Michael De Vlieger, Sep 21 2015 *)

Extensions

0 inserted, and name replaced with formula, by Jon E. Schoenfield, Sep 20 2015

A061457 Squares whose reversal is also a square.

Original entry on oeis.org

0, 1, 4, 9, 100, 121, 144, 169, 400, 441, 484, 676, 900, 961, 1089, 9801, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884, 16900, 40000, 40401, 40804, 44100, 44521, 44944, 48400, 48841, 67600, 69696, 90000, 90601
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

The corresponding square roots are in A102859.

Examples

			169 and 961 are both squares.
1089 = 33^2 and 9801 = 99^2 so 1089 and 9801 belong to the sequence.
		

Crossrefs

Cf. A102859 (square roots), A033294 (exclude final digit 0).

Programs

  • Magma
    [n^2: n in [0..306] | IsSquare(Seqint(Reverse(Intseq(n^2))))]; // Bruno Berselli, Apr 30 2011
    
  • Mathematica
    Select[Range[0,400]^2,IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 29 2019 *)
  • PARI
    { for(m=0, 1000, my(r=fromdigits(Vecrev(digits(m^2)))); if(issquare(r), print1(m^2, ", ") )) } \\ Harry J. Smith, Jul 23 2009
    
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A061457_gen(): # generator of terms
        return filter(lambda n:integer_nthroot(int(str(n)[::-1]),2)[1], (n**2 for n in count(0)))
    A061457_list = list(islice(A061457_gen(),30)) # Chai Wah Wu, Nov 18 2022

Formula

a(n) = A102859(n)^2.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 17 2001

A284986 Integers k such that k^2 is not a palindrome and the square root of the reverse of k^2 yields an integer with the same number of digits as k that is not the reverse of k.

Original entry on oeis.org

33, 99, 3168, 6501, 20508, 21468, 110922, 219111, 303577, 304877, 1100922, 1109211, 1110922, 1119111, 2191011, 2191111, 3080367, 3140793, 10110922, 11009111, 11009122, 11009221, 11019111, 11091011, 11091022, 11091111, 11091121, 11091122, 11091202, 11091211
Offset: 1

Views

Author

Geoffrey Marnell, Apr 06 2017

Keywords

Comments

Computer-based iteration shows that there are very few integers such that the square root of the reverse of the square of the integer yields an integer with the same number of digits. Between 1 and 100,000 there are just 168. Curiously, 153 of these 168 yield an integer that is the mirror (or reverse) of the starting number. Two examples: 21^2 = 441 and sqrt(144) = 12; 22^2 = 484 and sqrt(484) = 22. Intuition suggests that this mirroring is more likely if the square is a palindrome (as in the second example). But this is not the case. (The square is not a palindrome in 132 of the 153 cases.) The opposite appears to be the true for those integers that do not yield an equi-digit mirror: more cases occur where the square is a palindrome (9) than when it is not (6). The sequence is of those integers that generate neither a palindrome on squaring nor a mirror when the square root is taken of the reverse of the square (up to 10^6).

References

  • G. Marnell, Mathematical Doodlings: Curiosities, Conjectures and Challenges, Burdock Books, 2017, pages 96-102.

Crossrefs

Subsequence of A102859.

Programs

  • Mathematica
    rev[n_] := FromDigits@ Reverse@ IntegerDigits@n; Select[Range[10^5], (r = rev[#^2]) != #^2 && IntegerQ[q = Sqrt[r]] && q != rev[#] && Equal @@ IntegerLength[{q, #}] &] (* Giovanni Resta, Apr 15 2017 *)

Extensions

a(11)-a(30) from Giovanni Resta, Apr 15 2017

A359347 Roots of reversible pandigital square numbers.

Original entry on oeis.org

1111103, 3011111, 11110922, 11111003, 11111030, 11111120, 11111210, 11112110, 11211110, 12111110, 21111110, 21911111, 30011111, 30111110, 101110922, 101111112, 101111121, 101111211, 102111111, 110109212, 110911211, 110921111, 111109220, 111110030, 111110103
Offset: 1

Views

Author

Martin Renner, Dec 27 2022

Keywords

Comments

Reversible pandigital square numbers are perfect squares containing each digit from 0 to 9 at least once and still remain square numbers (not necessarily of the same length) when reversing the digits.

Examples

			1111103^2 = 1234549876609 <~> 9066789454321 = 3011111^2.
11110922^2 = 123452587690084  <~> 480096785254321 = 21911111^2.
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from itertools import count, islice
    def c(n): return len(set(s:=str(n)))==10 and isqrt(r:=int(s[::-1]))**2==r
    def agen(): yield from (k for k in count(10**6) if c(k*k))
    print(list(islice(agen(), 25))) # Michael S. Branicky, Dec 27 2022

Formula

a(n) = sqrt(A359346(n)).

A129914 Irregular square reversible numbers. Numbers which when squared and written backwards give a square again, but don't satisfy reverse(n^2) = reverse(n)^2.

Original entry on oeis.org

26, 33, 99, 260, 264, 307, 330, 836, 990, 2285, 2600, 2636, 2640, 3070, 3168, 3300, 6501, 8360, 9900, 20508, 21468, 22850, 22865, 24846, 26000, 26360, 26400, 30693, 30700, 31680, 33000, 65010
Offset: 1

Views

Author

Robert J. Lemke Oliver (lemkeoliver(AT)gmail.com), Jun 05 2007

Keywords

Examples

			33^2 = 1089 reversed is 9801 = 99^2.
		

Crossrefs

A234472 Numbers that when raised to the fourth power and written backwards give squares.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, 10000, 10001, 10010, 10100, 11000, 100000, 100001, 100010, 100100, 101000, 110000, 1000000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 10000000, 10000001, 10000010, 10000100, 10001000, 10010000
Offset: 1

Views

Author

Colin Barker, Dec 26 2013

Keywords

Comments

It seems that the numbers contain only the digits 0 and 1, and that the reversed fourth power and the square root of the reversed fourth power are both palindromes.
If the above comment is correct, and also if (as it appears) no more than two ones are among the digits of any term, this Mathematica program quickly generates the terms of the sequence: Flatten[Table[Select[ FromDigits/@Permutations[PadRight[PadRight[{},k,1],8,0]],IntegerQ[ Sqrt[ IntegerReverse[#^4]]]&],{k,0,2}]]//Sort - Harvey P. Dale, May 05 2020

Examples

			101 is in the sequence because 101^4 = 104060401 and 104060401 = 10201^2.
110 is in the sequence because 110^4 = 146410000 and 14641 = 121^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..10^7] | IsSquare(Seqint(Reverse(Intseq(n^4))))]; // Bruno Berselli, Dec 27 2013
    
  • Mathematica
    Select[Range[0,10^7],IntegerQ[Sqrt[IntegerReverse[#^4]]]&] (* Harvey P. Dale, May 05 2020 *)
  • PARI
    revint(n) = m=n%10; n\=10; while(n>0, m=m*10+n%10; n\=10); m
    s=[]; for(i=0, 1000000, if(issquare(revint(i^4)), s=concat(s, i))); s
    
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A234472_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(int(str(n**4)[::-1]),2)[1], count(max(startvalue,0)))
    A234472_list = list(islice(A234472_gen(),10)) # Chai Wah Wu, Nov 18 2022

A289140 Positive numbers k such that rev(k)^2 + rev(k^2) is a square, where rev(n) = A004086(n) is the digital reverse of n.

Original entry on oeis.org

998586, 3632658, 9985860, 36326580, 74471091, 99664458, 99858600, 363265800, 634826115, 743193501, 744710910, 756335085, 759317343, 996644580, 998586000, 3632658000, 6348261150, 7177621788, 7431935010, 7447109100, 7563350850, 7593173430, 9966445800
Offset: 1

Views

Author

Giovanni Resta, Jun 26 2017

Keywords

Comments

Every term must be a multiple of 3.

Examples

			998586 is a term since rev(998586^2) + 685899^2 = 1079100^2.
		

Crossrefs

Programs

  • Mathematica
    rev[n_] := FromDigits@ Reverse@ IntegerDigits@ n; Parallelize@ Select[3 Range[4 10^6], IntegerQ@ Sqrt[rev[#^2] + rev[#]^2] &]
  • PARI
    isok(n) = issquare(fromdigits(Vecrev(digits(n)))^2 + fromdigits(Vecrev(digits(n^2)))); \\ Michel Marcus, Jun 29 2017
Showing 1-7 of 7 results.