A359346 Reversible pandigital square numbers.
1234549876609, 9066789454321, 123452587690084, 123454387666009, 123454987660900, 123456987654400, 123458987664100, 123478988652100, 125688987432100, 146678985432100, 445678965432100, 480096785254321, 900666783454321, 906678945432100, 10223418547690084
Offset: 1
Examples
Sequence starts with 1111103^2 = 1234549876609 <~> 9066789454321 = 3011111^2, which is the smallest possible such number.
Links
- Martin Renner, Table of n, a(n) for n = 1..458
- Allan Cunningham, Question 15789, The Educational Times, and Journal of the College of Preceptors 58 (1905), nr. 530 (June 1), p. 273; Solution 15789, Ibid., 59 (1906), nr. 537 (Jan. 1), p. 39.
Programs
-
PARI
isok(k) = if (issquare(k), my(d=digits(k)); (#Set(d) == 10) && issquare(fromdigits(Vecrev(d)));); \\ Michel Marcus, Dec 31 2022
-
Python
from math import isqrt from itertools import count, islice def c(n): return len(set(s:=str(n)))==10 and isqrt(r:=int(s[::-1]))**2==r def agen(): yield from (k*k for k in count(10**6) if c(k*k)) print(list(islice(agen(), 15))) # Michael S. Branicky, Dec 27 2022
Comments