A295706 Primes p for which the difference between p^2 and the square of the next prime is both 1 more and 1 less than a prime.
7, 17, 23, 37, 47, 59, 83, 89, 107, 113, 127, 131, 149, 163, 173, 257, 353, 433, 439, 457, 467, 521, 563, 761, 773, 839, 881, 953, 1009, 1031, 1213, 1307, 1319, 1321, 1697, 1733, 1759, 1811, 1861, 1871, 1913, 1979, 2153, 2221, 2281, 2287, 2309, 2393, 2593, 2767, 2789
Offset: 1
Keywords
Examples
The primes 7 and 11 are consecutive and their squares are 49 and 121. The difference is 72, and both 71 and 73 are prime. Likewise, the difference between the square of 563 and the next prime (569) is 6792, and 6791 and 6793 are twin primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10^4: # to get all terms <= N p:= 1: q:= 2: A:= NULL: while p < N do p:= q; q:= nextprime(p); d:= q^2-p^2; if isprime(d+1) and isprime(d-1) then A:= A, p fi od: A; # Robert Israel, Mar 02 2018
-
Mathematica
For[p = 1, p < 10000, p++, a = Prime[p]; b = Prime[p + 1]; c = b^2 - a^2; d = (c + 1); e = (c - 1); If[And[PrimeQ[d] == True, PrimeQ[e] == True], Print[a]]; ] (* Second program: *) Select[Partition[Prime@ Range@ 300, 2, 1], AllTrue[{# + 1, # - 1}, PrimeQ] &[#2^2 - #1^2] & @@ # &][[All, 1]] (* Michael De Vlieger, Dec 03 2017 *)
-
PARI
lista(nn) = { my(pp=2); forprime(p=3, nn, my(d=p^2-pp^2); if(isprime(d+1) && isprime(d-1), print1(pp, ", ")); pp=p); } \\ Iain Fox, Dec 03 2017
Comments