A102865 Base-4 digits are, in order, the first n terms of the sequence (1, 3, 21, 203, 2021, 20203, 202021, 2020203, 20202021, 202020203, ... ).
1, 3, 9, 35, 137, 547, 2185, 8739, 34953, 139811, 559241, 2236963, 8947849, 35791395, 143165577, 572662307, 2290649225, 9162596899, 36650387593, 146601550371, 586406201481, 2345624805923, 9382499223689, 37529996894755, 150119987579017, 600479950316067
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,1,-4).
Crossrefs
Cf. A037576.
Programs
-
Mathematica
FromDigits[IntegerDigits[#],4]&/@(NestList[FromDigits[Flatten[ IntegerDigits[#]/.{3->{2,1},1->{0,3}}]]&,1,30]) (* or *) LinearRecurrence[{4,1,-4},{1,3,9},31](* Harvey P. Dale, Mar 23 2012 *)
Formula
4^n = a(n) + A037576(n) for n >= 1.
a(n) + a(n+1) = A039301(n+2).
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - Harvey P. Dale, Mar 23 2012
G.f.: 1 + x*(3-3*x-4*x^2)/((1-x)*(1+x)*(1-4*x)). - Colin Barker, Aug 28 2012
Extensions
More terms from Harvey P. Dale, Mar 23 2012