A102894 Number of ACI algebras or semilattices on n generators, with no identity or annihilator.
1, 1, 4, 45, 2271, 1373701, 75965474236, 14087647703920103947
Offset: 0
Examples
From _Gus Wiseman_, Aug 01 2019: (Start) The a(3) = 45 set-systems with {} and {1,2,3} that are closed under intersection are the following ({} and {1,2,3} not shown). The BII-numbers of these set-systems are given by A326880. 0 {1} {1}{2} {1}{2}{3} {1}{2}{3}{12} {1}{2}{3}{12}{13} {2} {1}{3} {1}{2}{12} {1}{2}{3}{13} {1}{2}{3}{12}{23} {3} {2}{3} {1}{2}{13} {1}{2}{3}{23} {1}{2}{3}{13}{23} {12} {1}{12} {1}{2}{23} {1}{2}{12}{13} {13} {1}{13} {1}{3}{12} {1}{2}{12}{23} {23} {1}{23} {1}{3}{13} {1}{3}{12}{13} {1}{2}{3}{12}{13}{23} {2}{12} {1}{3}{23} {1}{3}{13}{23} {2}{13} {2}{3}{12} {2}{3}{12}{23} {2}{23} {2}{3}{13} {2}{3}{13}{23} {3}{12} {2}{3}{23} {3}{13} {1}{12}{13} {3}{23} {2}{12}{23} {3}{13}{23} (End)
References
- G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
- E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.
Links
- Maria Paola Bonacina and Nachum Dershowitz, Canonical ground Horn theories, Lecture Notes in Computer Science 7797, 35-71 (2013).
- P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010).
- N. Dershowitz, G. S. Huang and M. Harris, Enumeration Problems Related to Ground Horn Theories, arXiv:cs/0610054v2 [cs.LO], 2006-2008.
- Christopher S. Flippen, Minimal Sets, Union-Closed Families, and Frankl's Conjecture, Master's thesis, Virginia Commonwealth Univ., 2023.
- M. Habib and L. Nourine, The number of Moore families on n = 6, Discrete Math., 294 (2005), 291-296.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)
Extensions
Additional comments from Don Knuth, Jul 01 2005
Comments