A102896 Number of ACI algebras (or semilattices) on n generators with no annihilator.
1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472
Offset: 0
Examples
From _Gus Wiseman_, Jul 31 2019: (Start) The a(0) = 1 through a(2) = 7 set-systems closed under union: {} {} {} {{1}} {{1}} {{2}} {{1,2}} {{1},{1,2}} {{2},{1,2}} {{1},{2},{1,2}} (End)
References
- G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
- P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010). [From Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010]
- E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.
Links
- Andrew J. Blumberg, Michael A. Hill, Kyle Ormsby, Angélica M. Osorno, and Constanze Roitzheim, Homotopical Combinatorics, Notices Amer. Math. Soc. (2024) Vol. 71, No. 2, 260-266. See p. 261.
- Daniel Borchmann and Bernhard Ganter, Concept Lattice Orbifolds - First Steps, Proceedings of the 7th International Conference on Formal Concept Analysis (ICFCA 2009), 22-37.
- Jishnu Bose, Tien Chih, Hannah Housden, Legrand Jones II, Chloe Lewis, Kyle Ormsby, and Millie Rose, Combinatorics of factorization systems on lattices, arXiv:2503.22883 [math.CO], 2025. See p. 11.
- Pierre Colomb, Alexis Irlande, Olivier Raynaud and Yoan Renaud, About the Recursive Decomposition of the lattice of co-Moore Families, ICFCA 2011.
- Pierre Colomb, Alexis Irlande, Olivier Raynaud, and Yoan Renaud, Recursive decomposition tree of a Moore co-family and closure algorithm, Annals of Mathematics and Artificial Intelligence, 2013, DOI 10.1007/s10472-013-9362-x.
- Nachum Dershowitz, Mitchell A. Harris, and Guan-Shieng Huang, Enumeration Problems Related to Ground Horn Theories, arXiv:cs/0610054v2 [cs.LO], 2006-2008.
- Michel Habib and Lhouari Nourine, The number of Moore families on n = 6, Discrete Math., 294 (2005), 291-296.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
Formula
a(n) = Sum_{k=0..n} C(n, k)*A102894(k), where C(n, k) is the binomial coefficient.
For asymptotics see A102897.
a(n) = A102897(n)/2. - Gus Wiseman, Jul 31 2019
Extensions
N. J. A. Sloane added a(6) from the Habib et al. reference, May 26 2005
Additional comments from Don Knuth, Jul 01 2005
a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010
Comments