cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102896 Number of ACI algebras (or semilattices) on n generators with no annihilator.

Original entry on oeis.org

1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Or, number of Moore families on an n-set, that is, families of subsets that contain the universal set {1,...,n} and are closed under intersection.
Or, number of closure operators on a set of n elements.
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of set-systems on n vertices that are closed under union. The BII-numbers of these set-systems are given by A326875. - Gus Wiseman, Jul 31 2019
From Bernhard Ganter, Jul 08 2025: (Start)
Also the number of union-free families of subsets of an n-set; i.e., families of nonempty sets on n elements such that no set is a union of some others.
Also the number of intersection-free families of subsets of an n-set; i.e., of families of proper subsets on n elements such that no set is an intersection of some others.
(Note that every union-free family on an n-set is the set of union-irreducible elements of exactly one union-closed family, and each family of union-irreducible elements is union-free. Same for intersection.) (End)

Examples

			From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 1 through a(2) = 7 set-systems closed under union:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010). [From Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010]
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

For set-systems closed under union:
- The covering case is A102894.
- The unlabeled case is A193674.
- The case also closed under intersection is A306445.
- Set-systems closed under overlapping union are A326866.
- The BII-numbers of these set-systems are given by A326875.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*A102894(k), where C(n, k) is the binomial coefficient.
For asymptotics see A102897.
a(n) = A102897(n)/2. - Gus Wiseman, Jul 31 2019

Extensions

N. J. A. Sloane added a(6) from the Habib et al. reference, May 26 2005
Additional comments from Don Knuth, Jul 01 2005
a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010