cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A102920 Triangular matrix, read by rows, equal to the matrix square of A102098.

Original entry on oeis.org

1, 3, 4, 36, 40, 9, 1036, 1128, 189, 16, 56355, 61120, 9720, 576, 25, 5045370, 5466320, 857466, 47040, 1375, 36, 679409158, 735847800, 114915375, 6155008, 163500, 2808, 49, 129195427716, 139910204080, 21813099606, 1158059520, 29767000, 458136
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Column 0 is A102921. Column 1 is A102922.

Examples

			Rows begin:
[1],
[3,4],
[36,40,9],
[1036,1128,189,16],
[56355,61120,9720,576,25],
[5045370,5466320,857466,47040,1375,36],
[679409158,735847800,114915375,6155008,163500,2808,49],...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(A=matrix(1,1),B);A[1,1]=1; for (m=2,n+1,B=matrix(m,m);for (i=1,m, for (j=1,i, if(j==i,B[i,j]=j,B[i,j]=(A^3)[i-1,j]);));A=B); return((A^2)[n+1,k+1])}

A102918 Column 1 of triangle A102916.

Original entry on oeis.org

0, 2, 4, 8, 40, 152, 1128, 6200, 61120, 442552, 5466320, 49399320, 735847800, 8003532512, 139910204080, 1784040237288, 35858685086352, 525504809786112, 11953187179149408, 198213959637435608, 5037776918810353960
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Also equals the interleaving of A102099 with A102922, which equal column 1 of triangle A102098 and its matrix square (A102920), respectively.

Examples

			2 = 2*(1-2x) + 4*x*(1-2x) + 8*x^2*(1-2x)(1-3x) + 40*x^3*(1-2x)(1-3x)
+ 152*x^4*(1-2x)(1-3x)(1-4x) + 1128*x^5*(1-2x)(1-3x)(1-4x)
+ 6200*x^6*(1-2x)(1-3x)(1-4x)(1-5x) + 61120*x^7*(1-2x)(1-3x)(1-4x)(1-5x) +...
+ A102099(n+1)*x^(2n)*(1-2x)(1-3x)*..*(1-(n+2)x)
+ A102922(n+1)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+2)x) + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,2,polcoeff(2-sum(k=0,n-1,a(k)*x^k*prod(j=2,k\2+2,1-j*x+x*O(x^n))),n))}

Formula

G.f.: 2 = Sum_{n>=0}(a(2*n+1)+a(2*n+2)*x)*x^(2*n)*Product_{k=2..n+2}(1-k*x) where a(2*n+1)=A102099(n+1) and a(2*n+2)=A102922(n+1) with a(0)=0.
Showing 1-2 of 2 results.